1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1
Chromium is strange because it moves on to the 4s orbital instead of filling the 3d orbital with that last electron. Tricky.
Mark as brainliest if this helped! :)
Answer:
The answer to your question is 0.10 M
Explanation:
Data
Molarity = ?
mass of Sucrose = 125 g
volume = 3.5 l
Formula
Molarity = moles / volume
Process
1.- Calculate the molar mass of sucrose
C₁₂H₂₂O₁₁ = (12 x 12) + (1 x 22) + (16 x 11)
= 144 + 22 + 176
= 342 g
2.- Convert the mass of sucrose to moles
342 g of sucrose ------------------- 1 mol
125 g of sucrose -------------------- x
x = (125 x 1) / 342
x = 0.365 moles
3.- Calculate the molarity
Molarity = 0.365 / 3.5
4.- Result
Molarity = 0.10
<span>Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be.
Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.</span>
Answer:

Explanation:
Hello,
In this case, is possible to infer that the thermal equilibrium is governed by the following relationship:

Thus, both iron's and water's heat capacities are: 0.444 and 4.18 J/g°C respectively, so one solves for the mass of water as shown below:

Best regards.