Answer:
I think that is pretty good and if you get it wrong you showed your work so your teacher can see you're thinking. That is defenetly gonna get you a score.
Explanation:
Answer:

Explanation:
The Celsius and Kelvin scales are used to measure the temperature of matter. Their scales and unit differences are the same (1 K increase = 1 °C increase), but they have different starting points.
So, the conversion is quite simple and only requires addition because of the different starting points. The formula is:

The boiling point of liquid nitrogen is -195.8 °C. We can substitute this value into the formula.


The boiling point of liquid nitrogen is 77.35 Kelvin.
Answer:
A- beryllium
B- calcium
C- magnesium
Explanation
NOTE: all element in group 2 have 2 balance electrons
First let’s start with B- number of electrons= number of protons which is equal to the atomic number. therefore, the answer is calcium as it’s atomic number is 20
C- magnesium will have three energy levels considering it has 12 electrons (2,8,2).
A- beryllium is the lightest one in group 2 as it has the atomic mass of 9.0122.
Paper chromatography can be applied to "ink" to determine if it is a pure substance or a "mixture" of pure substances (in which two or more pure substances are combined). Since, tested with paper chromatography, "ink" separates into its constituent pure substances, Ink is a mixture.
I hope this helps.
P.S. Thank you for choosing me as brainliest answer on my last.
Answer:
Explanation:
When an electron jumps from one energy level to a lower energy level some energy is released in the form of a photon.
The difference in energy between the two levels is the energy of the photon and that energy is related to the frequency of the photon by the Einstein - Planck equation:
Where,
- E = energy of the photon,
- h = 6.626×10⁻³⁴ J.s, Planck constant, and
- ν = frequency of the photon.
So, to find the frequency you must first find the energy.
The transition energy can be calculated using the formula:
Where E₀ = 13.6 eV ( 1 eV = 1.602×10⁻¹⁹ Joules) and n = 1,2,3,...
So, the transition energy between n = 4 and n = 3 will be:
- ΔE = - E₀ [ 1/4² - 1/3²] = - 13.6 eV [1/16 - 1/9] = 0.6611. . .eV
- ΔE = 1.602×10⁻¹⁹ Joules/eV × 0.6611... eV = 1.0591 ×10⁻¹⁹ Joules
Now you can use the Einstein - Planck equation:
- ν = 1.0591 ×10⁻¹⁹ J / 6.626×10⁻³⁴ J.s = 1.60×10¹⁴ s⁻¹ (rounded to 3 significant figures).