Answer:
0.082g
Explanation:
The following data were obtained from the question:
Heat (Q) = 0.092J
Change in temperature (ΔT) = 0.267°C
Specific heat capacity (C) of water = 4.184J/g°C
Mass (M) =..?
Thus, the mass of present can be obtained as follow:
Q = MCΔT
0.092 = M x 4.184 x 0.267
Divide both side by 4.184 x 0.267
M = 0.092 / (4.184 x 0.267)
M = 0.082g
Therefore, mass of water was present is 0.082.
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
Answer:
a) 72 °F= 22.22 °C
b) 213.8 °C= 416.84°F
c) 180 °C= 453.15 °K
d) 315 °K= 107.33 °F
e) 1750 °F= 1227.594 °K
f) 0 °K= -459.67 °F
Explanation:
Para realizar el intercambio de unidades debes tener en cuenta las siguientes conversiones:
- Fahrenheit a Celsius:

- Celsius a Fahrenheit: °F= °C*1.8 + 32
- Celsius a Kelvin: °K= °C + 273.15
- Kelvin a Fahrenheit: F= (K -273.15)*1.8 + 32
- Fahrenheit a Kelvin:

Entonces se obtiene:
a) 72 °F=
=22.22 °C
b) 213.8 °C= 213.8*1.8 + 32= 416.84°F
c) 180 °C= 180°C + 273.15= 453.15 °K
d) 315 °K= (315 -273.15)*1.8 + 32= 107.33 °F
e) 1750 °F=
= 1227.594 °K
f) 0 °K= (0 -273.15)*1.8 + 32= -459.67 °F
Answer:
Calcium is then pumped back into the sarcoplasmic reticulum breaking the link between actin and myosin.
Explanation:
Actin and myosin return to their unbound state causing the muscle to relax. Alternatively relaxation (failure) will also occur when ATP is no longer available.