1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
2 years ago
10

The following are the results of a sieve analysis. U.S. sieve no. Mass of soil retained (g) 4 0 10 18.5 20 53.2 40 90.5 60 81.8

100 92.2 200 58.5 Pan 26.5 a. Determine the percent ner than each sieve and plot a grain-size distribution curve. b. Determine D10, D30, and D60 for each soil. c. Calculate the uniformity coefcient Cu. d. Calculate the coefcient of gradation Cc
Engineering
1 answer:
il63 [147K]2 years ago
3 0

Answer:

a.)

US Sieve no.                         % finer (C₅ )

4                                                  100

10                                                95.61

20                                               82.98

40                                               61.50

60                                               42.08

100                                              20.19

200                                              6.3

Pan                                               0

b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4

c.) Cu = 3.33

d.) Cc = 1

Explanation:

As given ,

US Sieve no.             Mass of soil retained (C₂ )

4                                            0

10                                          18.5

20                                         53.2

40                                         90.5

60                                         81.8

100                                        92.2

200                                       58.5

Pan                                        26.5

Now,

Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g

⇒ w = 421.2 g

As we know that ,

% Retained = C₃ = C₂×\frac{100}{w}

∴ we get

US Sieve no.               % retained (C₃ )               Cummulative % retained (C₄)

4                                            0                                           0

10                                          4.39                                      4.39

20                                         12.63                                     17.02

40                                         21.48                                     38.50

60                                         19.42                                     57.92

100                                        21.89                                     79.81

200                                       13.89                                     93.70

Pan                                        6.30                                      100

Now,

% finer = C₅ = 100 - C₄

∴ we get

US Sieve no.               Cummulative % retained (C₄)          % finer (C₅ )

4                                                     0                                          100

10                                                  4.39                                      95.61

20                                                 17.02                                     82.98

40                                                 38.50                                    61.50

60                                                 57.92                                    42.08

100                                                79.81                                     20.19

200                                                93.70                                   6.3

Pan                                                 100                                        0

The grain-size distribution is :

b.)

From the diagram , we can see that

D10 = 0.12

D30 = 0.22

D60 = 0.12

c.)

Uniformity Coefficient = Cu = \frac{D60}{D10}

⇒ Cu = \frac{0.4}{0.12} = 3.33

d.)

Coefficient of Graduation = Cc = \frac{D30^{2}}{D10 . D60}

⇒ Cc = \frac{0.22^{2}}{(0.4) . (0.12)} = 1

You might be interested in
Two common message delivery metrics that measure how much of the target market is exposed to the advertisement and the number of
Nostrana [21]

Answer:

Effective reach and Frequency

Explanation:

Effective Reach is percentage of target audience that is exposed to a particular ad and receives given message to affect sales and purchase who are reached at or above effective frequency level. Here effective frequency level is the number of exposures necessary to make an impact and attain communication goal.

Effective reach is used in application of statistics to advertising and media analysis to calculate the effectiveness of ad and means used for ad. Effective reach is a time-dependent summary of aggregate audience behaviour.

3 0
3 years ago
I took my dog for a walk, but he wants to go again.
Talja [164]

He probably just like the cool weather or being outside lol

7 0
3 years ago
An overhead 25m-long, uninsulated industrial steam pipe of 100-mm diameter, is routed through a building whose walls and air are
wariber [46]

Answer:

1) q=18414.93 W

2) C=12920$

Explanation:

Given data:

pipe length L=25m

pipe diameter D=100mm =0.1 m

air temperature T_{s1}=T_{\infty1} }=25 °C.....= 298.15k

pipe surface temp T_{s2}=150 °C.....=423.15k

surface emissivity e= 0.8

boiler efficiency η=0.90

natural gas price Cg=$0.02 per MJ

1) Total heat loss and radiation heat loss combined

          q=q_{conv} +q_{rad}

          q=A[h(T_{s2}-T_{s1})+eб(T_{s2}^4-T_{s1}^4)]....... (1)

б=5.67×10^-8 W/m^2K^4 (boltzmann constant)

area A =L.Dπ=25×0.1π=7.85 m^2

putting all these values in eq (1)

q=18414.93 W

2) suppose boiler is operating non stop annual energy loss will be

               E=q.t

                  =18414.93.3600.24.365

                  =5.81×10^11 J

   to find furnace energy consumption

               Ef =E/η

                  =6.46×10^5 MJ

   annual cost

                  C=Cg. Ef

                    =12920$

8 0
3 years ago
Which of the following are examples of engineering controls? Select all that apply.
Neporo4naja [7]

The examples of engineering controls is Biohazard waste containers and Spill clean up kits.

What is engineering controls?

An engineering controls is a workplace process that protect workers by removing hazardous conditions or by placing a barrier between the worker and the hazard.

An example of engineering controls is installation of exhaust ventilation to remove airborne emissions to shield the worker.

Hence, the examples of engineering controls is Biohazard waste containers and Spill clean up kits.

Therefore, the Option C and D is correct.

8 0
2 years ago
As the transmission is shifted from first gear to second gear, the torque delivered by the output shaft is:
yuradex [85]

Answer: reduced

Explanation:

Lower gears deliver higher torque.

5 0
3 years ago
Other questions:
  • Dampers dampers springs are used inside some valve spring to
    10·1 answer
  • Question 21(Multiple Choice
    11·2 answers
  • I need ideas for what to build because I have some spare wood.
    10·1 answer
  • The figure angle c measures 38°
    9·1 answer
  • Which of the following statements is not true about underage drinking?
    10·1 answer
  • When you come to an intersection, follow the _________ before you proceed.
    6·2 answers
  • Do you know who Candice is
    8·2 answers
  • Which of the following activities could be considered unethical?
    7·1 answer
  • An air conditioning system is to be filled from a rigid container that initially contains 5 kg of saturated liquid at 24° Celsiu
    14·1 answer
  • True or false? if i were to hook up an ac voltage source to a resistor, the voltage drop across the resistor would be in phase w
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!