Answer:
A
Explanation:
The best method that will yield significantly more accurate result is to use spectrophotometer to read the turbidity of the sample and increase in turbidity is associated with increase biomass.
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Answer:
the heat transfer from the pipe will decrease when the insulation is taken off for r₂< 
where;
r₂ = outer radius
= critical radius
Explanation:
Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h .

The rate of heat transfer from the cylinder increases with the addition of insulation for outer radius less than critical radius (r₂<
) 0, and reaches a maximum when r₂ =
, and starts to decrease for r₂<
. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when r₂<
.