Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / 
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
= 
given that
= 480 mm
we substitute
=
× 
= 501.998 mm
Now we find the elongation;
Elongation = 
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
Answer:
See explaination
Explanation:
#include <iostream>
#include<string.h>
using namespace std;
bool isPalindrome(string str, int lower, int upper){
if(str.length() == 0 || lower>=upper){
return true;
}
else{
if(str.at(lower) == str.at(upper)){
return isPalindrome(str,lower+1,upper-1);
}
else{
return false;
}
}
}
int main(){
string input;
cout<<"Enter string: ";
cin>>input;
if(isPalindrome(input,0,input.length()-1)){
cout<<input<<" is a palindrome"<<endl;
}
else{
cout<<input<<" is NOT a palindrome"<<endl;
}
return 0;
}
The answer is B . have a good day
Explanation:
As a general rule of thumb, the large the diameter of a bearing, bushing or pin, the larger the tolerance range,” Brieschke points out. “The inverse is true for smaller-diameter pieces.”
Mike Brieschke, vice president of sales at Aries Engineering, says a 0.25-inch-diameter metal dowel that is press-fit into a mild steel hole usually has an interference of ±0.0015 inch. Parts in noncritical assemblies tend to have looser tolerances
please rate brainliest if helps and follow
Answer:
Final length of the rod = 13.90 in
Explanation:
Cross Sectional Area of the polythene rod, A = 0.04 in²
Original length of the polythene rod, l = 10 inches
Tensile modulus for the polymer, E = 25,000 psi
Viscosity, 
Weight = 358 lbs - f
time, t = 1 hr = 3600 sec
Stress is given by:

Based on Maxwell's equation, the strain is given by:

Strain = Extension/(original Length)
0.39022 = Extension/10
Extension = 0.39022 * 10
Extension = 3.9022 in
Extension = Final length - Original length
3.9022 = Final length - 10
Final length = 10 + 3.9022
Final length = 13.9022 in
Final length = 13.90 in