Answer:
The distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2
Explanation:
From the image uploaded, a Face centered cubic structure (100) plane, there is one atom at each of the four cube corners, each of which is shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.
In terms of the atomic radius, R, we determine the distance between the centers of adjacent atoms.
Let this distance = AC
the two adjacent sides = AB and BC
AB = a = 2R
BC = a = 2R
Using Pythagoras theorem
AC² = AB² + BC²
AC² = a² + a²
AC² = 2a²
AC = √2a²
AC = a√2
But a = 2R
AC = 2R√2
Therefore, the distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2
Answer:
a. 130.73 atm
b. 102.62 atm
c. 87.1 atm
Explanation:
See the attached pictures.
Answer:
Q = 125.538 W
Explanation:
Given data:
D = 30 cm
Temperature
degree celcius

Heat coefficient = 12 W/m^2 K
Efficiency 80% = 0.8


Q = 125.538 W
Answer:
The volume flow rate of air is 
Explanation:
A random duct is shown in the below attached figure
The volume flow rate is defined as the volume of fluid that passes a section in unit amount of time
Now by definition of velocity we can see that 'v' m/s means that in 1 second the flow occupies a length of 'v' meters
From the attached figure we can see that
The volume of the prism that the flow occupies in 1 second equals

Hence the volume flow rate is 