1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fiasKO [112]
3 years ago
12

A skydiver uses a parachute to:

Physics
1 answer:
Alchen [17]3 years ago
7 0

increase air resistance, which decreases gravitational acceleration

You might be interested in
A passenger in a train accelerating smoothly away from a station observes that a child’s yo-yo hanging by its string from a lugg
olchik [2.2K]

Answer:

1.73 m/s²

3.0 cm

Explanation:

Draw a free body diagram of the yo-yo.  There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.

Sum of forces in the y direction:

∑F = ma

T cos 10° − mg = 0

T cos 10° = mg

T = mg / cos 10°

Sum of forces in the x direction:

∑F = ma

T sin 10° = ma

mg tan 10° = ma

g tan 10° = a

a = 1.73 m/s²

Draw a free body diagram of the sphere.  There are two forces: weight force mg pulling down, and air resistance D pushing up.  At terminal velocity, the acceleration is 0.

Sum of forces in the y direction:

∑F = ma

D − mg = 0

D = mg

½ ρₐ v² C A = ρᵢ V g

½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g

3 ρₐ v² C = 8 ρᵢ r g

r = 3 ρₐ v² C / (8 ρᵢ g)

r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))

r = 0.030 m

r = 3.0 cm

3 0
3 years ago
9. A 5.0 kg block on an inclined plane is acted upon by a horizontal force of 100 N shown in the figure below. The coefficient o
Helga [31]

Answer:

A: The acceleration is 7.7 m/s up the inclined plane.

B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane

Explanation:

Let us work with variables and set

m=5kg\\\\F_H=100N\\\\\mu=0.3\\\\\theta=37^o.

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.

Part A:

From the free body diagram we see that the total force along the x-axis is:

F_{tot}=mg*sin(\theta)+F_s-F_Hcos(\theta).

Now the force of friction is F_s=\mu*N, where N is the normal force and from the diagram it is F_y=mg*cos(\theta).

Thus F_s=\mu*N=\mu*mg*cos(\theta).

Therefore,

F_{tot}=mg*sin(\theta)+\mu*mg*cos(\theta)-F_Hcos(\theta)\\\\=mg(sin(\theta)+\mu*cos(\theta))-F_Hcos(\theta).

Substituting the value for F_H,m,\mu, and \:\theta we get:

F_{tot}= -38.63N.

Now acceleration is simply

a=\frac{F_H}{m} =\frac{-38.63N}{5kg} =-7.7m/s.

The negative sign indicates that the acceleration is directed up the incline.

Part B:

d=\frac{1}{2} at^2

Which can be rearranged to solve for t:

t=\sqrt{\frac{2d}{a} }

Substitute the value of d=0.50m and a=7.7m/s and we get:

t=0.36s.

which is our answer.

Notice that in using the formula to calculate time we used the positive value of a, because for this formula absolute value is needed.

5 0
4 years ago
Someone help please by providing work and answers please :)
Nastasia [14]
First we gotta use an equation of motion:

d = ut + \frac{1}{2} a {t}^{2}

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

100 = 0 + \frac{1}{2} (9.8) {t}^{2}

Now we just need to solve for t:

{t}^{2} = \frac{2(100)}{9.8} \\ \\ t = \sqrt{\frac{2(100)}{9.8}}

Hit the calculators, and you'll get 4.5 seconds!
5 0
3 years ago
a radio antenna broadcasts a 1.0 MHz radio wav e with 21 kW of power. Assume that the radiation is emitted uniformly in all dire
My name is Ann [436]

Answer:

I=2.67\times 10^{-6}\ W/m

Explanation:

Given that,

Frequency of a radio antenna is 1 MHz

Power, P = 21 kW

We need to find the the waves intensity 25 km from the antenna . The object emits intenisty evenly in all direction. It can be given by :

I=\dfrac{P}{4\pi r^2}\\\\I=\dfrac{21\times 10^3}{4\pi (25000)^2}\\\\I=2.67\times 10^{-6}\ W/m

So, the wave intensity 25 km from the antenna is 2.67\times 10^{-6}\ W/m.

5 0
3 years ago
Mass can be considered concentrated at the center of mass for rotational motion.Select one:TrueFalse
frez [133]

iIn this case the mass of a body cannot be considered to be concentrated at the centre of mass of the body for the purpose of computing the rotational motion

Therefore the answer is False

6 0
1 year ago
Other questions:
  • A 100-mm pipe is used to transfer oil from a reservoir to a 100- liter tank. It takes 45 minutes to fill the tank with oil that
    12·1 answer
  • A physics major is cooking breakfast when he notices that the frictional force between the steel spatula and the Oiled Steel fry
    6·1 answer
  • An electron falls through a distance d in a uniform electric field of magnitude E. Thereafter, the direction of the field is rev
    12·2 answers
  • Extend the life of your __________ by avoiding fast starts, stops and sharp turns.
    11·1 answer
  • A 13 kg hanging sculpture is suspended by a 95-cm-long, 5.0 g steel wire. When the wind blows hard, the wire hums at its fundame
    7·2 answers
  • Which has a neutral charge?
    10·2 answers
  • Two long, straight wires are separated by a distance of 32.2 cm. One wire carries a current of 2.75 A, the other carries a curre
    11·1 answer
  • 1. James drives 400 km in 5 hours to his grandmothers. What are the units for speed going to be?
    9·1 answer
  • What is an Alternative fuel?
    9·2 answers
  • HELPPP PLEASE !!!!!!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!