Answer:
It takes you 32.27 seconds to travel 121 m using the speed ramp
Explanation:
<em>Lets explain how to solve the problem</em>
- The speed ramp has a length of 121 m and is moving at a speed of
2.2 m/s relative to the ground
- That means the speed of the ramp is 2.2 m/s
- You can cover the same distance in 78 seconds when walking on
the ground
<em>Lets find your speed on the ground</em>
Speed = Distance ÷ Time
The distance is 121 meters
The time is 78 seconds
Your speed on the ground = 121 ÷ 78 = 1.55 m/s
If you walk at the same rate with respect to the speed ramp that
you walk on the ground
That means you walk with speed 1.55 m/s and the ramp moves by
speed 2.2 m/s
So your speed using the ramp = 2.2 + 1.55 = 3.75 m/s
Now we want to find the time you will take to travel 121 meters using
the speed ramp
Time = Distance ÷ speed
Distance = 121 meters
Speed 3.75 m/s
Time = 121 ÷ 3.75 = 32.27 seconds
It takes you 32.27 seconds to travel 121 m using the speed ramp
Answer:
The mass of unknown object is 8.62Kg
Explanation:
To develop this problem it is necessary to apply the equations related to the Drag force and the Force of Gravity.
For the given point, that is, the moment at which the terminal velocity is reached, the two forces equalize, that is,

By definition we know that the Drag force is defined as

Where,
Drag coefficient
Density
A =Cross-sectional Area
V = Velocity
In the other hand we have,

Where,
Mass of sphere
Mass of unknown object
Equating the two equations we have to

Re-arrange for m_2,

Our values are given by,






Replacing in the equation we have,


<em>Therefore the mass of unknown object is 8.62Kg</em>