Density is calculated as mass per unit volume. In this case, since the material has a mass of 47 grams and we have the volume of 15 cm^3, we can simply divide the values:
Density = 47 grams / 15 cm^3 = 3.1 g/cm^3
Therefore, the material has a density of 3.1 g/cm^3
Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer
given,
mass of the = m₁ = 8.75 Kg
another mass of the object = m₂ = 14 Kg
distance between them = 50 cm
R₁ = 17 cm
R₂ = 50 -17 = 33 cm
a) Force applied due to the Mass 8.75 in +ve x- direction



Force applied due to mass 14 Kg in -ve x-direction



net force
F = F₁ + F₂


Using newton second law



b) As the acceleration of mass comes out to be +ve hence, the direction will be toward the mass of 8.75 Kg
I think the conductive heat loss is proportional to the DIFFERENCE
between the inside and outside temperatures. In other words, if it's the
same temperature inside and outside, then no matter what that temperature
is, no heat flows through the walls of the house in either direction.
You said it's 20° outside, and you turn the thermostat down from 70° to 60°.
So you'd be reducing the DIFFERENCE between the inside and outside
temperatures from 50° to 40°.
From 50 to 40 is a decrease of (10/50) = 20%. So your heat loss ... and
the amount that gets added to your heating bill ... becomes 20% less for
each hour that the inside and outside temperatures stay like this.
They realized this as result of the number of sunspots getting larger and smaller over the course of the years .
<h3>What is Sunspot?</h3>
This is defined as a temporary phenomena on the Sun's photosphere that appear as spots darker than the surrounding areas.
The presence of these sunspots is what gave Astronomers the idea of the Sun having varying levels of activities over the years.
Read more about Sunspots here brainly.com/question/4953210