Answer:
41.3 m/s^2 option (e)
Explanation:
force, F = 6.81 N
mass, m = 165 g = 0.165 kg
Let a be the acceleration of the puck.
Use newtons' second law
Force = mass x acceleration
6.81 = 0.165 x a
a = 41.27 m/s^2
a = 41.3 m/s^2
Thus, the acceleration of the puck is 41.3 m/s^2.
Answer: E = 941738.537J
Explanation:
to begin,
given that the mass = 2320 pound = 1052.334 kg
Δh = 110 ft = 33.528 m
given that distance (d) = 1283 ft = 391.058 m
also the speed (v) is 65 mph = 29.058 m/s
force (F) = 87 pounds = 386.995 N
from our knowledge in work energy theory;
E = Fd + 1/2mv² + mgh
E = (386.995 × 391.058) + (1/2×1052.334×29.058²) + (1052.334×9.81×33.528)
E = 151337.491 + 444278.2 + 346122.84
E = 941738.537J
i hope this helps, cheers.
Failed experiments, uncontrolled variables, invalid data, and generalized human error
The only answer that can justify being a hypothesis is C.