Answer:
d A ball is rolling down an inclined plane.
Explanation:
When path length is equal to the displacement
then we can say that the motion of the object must be in straight line so that the distance and displacement must be same
SO here we can say
a A ball on the end of a string is moving in a vertical circle.
In circular path distance and displacement is not same
b A toy train is traveling around a circular track.
In circular path distance and displacement is not same
c A train travels 5 miles east before it stops. It then travels 2 miles west.
Net displacement is 3 miles East while distance is 7 miles
d A ball is rolling down an inclined plane.
Here its motion is in straight line so we can say that path length and displacement will be same
e A ball rises and falls after being thrown straight up from the earth's surface.
In this type of to and fro motion path length is not same as displacement
the earth exerts a gravitational force
Answer:
they use thermals and air currents to glide.
Explanation:
when they flap higher they use thermals and air currents because flapping takes a lot of fuel,energy
Answer: L can be expressed in terms of g and f as
L = g/(2πf)^2
Explanation: Please see the attachments below
Explanation:
The given data is as follows.
height (h) = 98.0 m, speed (v) = 73.0 m/s,
Formula of height in vertical direction is as follows.
h =
,
or, t =
Now, formula for the required distance (d) is as follows.
d = vt
=
=
= 326.5 m
Thus, we can conclude that 326.5 m is the horizontal distance from the target from where should the pilot release the canister.