Answer:
When white glue is in the bottle, there's not enough air inside the bottle to cause the water to evaporate to make the glue sticky. Basically, the bottle holds the glue from the air and keeps the glue from going everywhere.
Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
To find the net ionic equation we must first write the balanced equation for the reaction. We must bear in mind that the reagents Ca(NO3)2 and Na2S are in the aqueous state and as product we will have CaS in the solid state, since it is not soluble in water and NaNO3 in the aqueous state.
The balanced equation of the reaction will be:

Ca(NO3)2(aq) + → Ca(aq) + 2Na(s)NO3Now, c(aq)ompounds in the aqueous state can be written in their ionic form, so the reaction will transform into:Na2S +

So, the answer will be option A
B
1 mile=4 poles
if 5 poles pass by than she´s going around 1.25 miles per min
rounded up = 1.3 mil/min