6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
18.9 moles of MgCl2 = 17.834 kg of MgCl2
Explanation:
The molecular weight of MgCl is 80.0 g/mol . So, to convert the given mole amount to grams, multiply this by this number, which is constant for all compounds with a specific composition (mass fraction).
Considering the original question was in the context of chemistry, I wanted to make it seem formal and more educational too. Hopefully that worked!
EDIT: Came up with some text around what happens inside cells that would have made it better if someone just had an issue converting units, but I doubt my answer will be accepted >.<
OD.......................
Antimony also forms trihalides and pentahalides, such as SbF3 , where its oxidation state is +3, and SbF5 , where its oxidation state is +5
Answer:
15.17 g
Explanation:
To answer this, we need to find the molar mass of nickel in nickel (II) fluoride. The formula for nickel (II) fluoride is NiF2. This gives us the molar mass of 96.69 g. The mass percentage of nickel is 60.70% approximately (as we divide the molar mass of nickel by that of nickel (II) fluoride), and 60% of 25g gives us 15.17 g