Answer:
I'm not sure..but please refer to your teacher later.
Answer: Based on Newton's First law of motion (where inertia is involved), smooth ice increases the forceused to accelerate the hockey puck.
Explanation;
- smooth ice reduces the resistances between the surface of the figure skates and the ice itself.
- based on inertia theory ; the heavier the weight, the larger the inertia.. which explains it takes alot of force to move a heavier object than the lighter ones.. it also hard to *stop* the motion of heavier objects than the lighter ones.
- now let's look at the design of the player shoe itself, they have a sharp blade at the bottom of the figure stakes.. which takes us to the law of the force.. the smaller the surface area, the more forces acting on it. So, players force (weight, F= mg) acts on the tip of the blade and on the ice
- high inertia (run fast) and high force (attack opponent and pass puck) enables them to perform well in playing hockey
- Thus if there's no resistance and the inertia of the player is high then they could run and pass the puck quickly
Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is, 
Velocity in north direction is, 
Now, since
are perpendicular to each other, their resultant magnitude is given as:

Plug in the given values and solve for the magnitude of the resultant.This gives,

Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:

Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.
Answer:
1.171
Explanation:
if n₁sinΘ₁=n₂sinΘ₂, then n₂=n₁sinΘ₁ / sinΘ₂;

Answer:
T = 0.017s
Explanation:
period is the time it takes a particle to make one oscillation
An electric current is periodic in nature
The current reaches 3.8A ten times.
So there must have been 10 cycles (10 periods) in 0.17s. let 'T' be the period:

t is the total time interval
n is the number of oscillations

10T = 0.17
T = 0.17/10 = 0.017s