Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below: 
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,



Thus,

It means star A is 2754.22 time brighter than Star B.
Explanation :
It is given that,
BMR i.e basal metabolic rate is 88 kcal/hr. So, BMR in watts is converted by the following :
We know that, 1 kilocalorie = 4184 joules
So, 

J/sec is nothing but watts.
So, 
and 
So, it can be seen that the body can accommodate a modes amount of activity in hot weather but strenuous activity would increase the metabolic rate above the body's ability to remove heat.
In this problem we have the electric field intensity E:
E = 6.5 ×
newtons/coulomb
We have the magnitude of the load:
q = 6.4 ×
coulombs
We also have the distance d that the load moved in a direction parallel to the field 1.2 ×
meters.
We know that the electric potential energy (PE) is:
PE = qEd
So:
PE = (6.4 ×
)(6.5 ×
)(1.2 ×
)
PE = 5.0 x
joules
None of the options shown is correct.
Answer:
Explanation:
This is a problem based on time dilation , a theory given by Albert Einstein .
The formula of time dilation is as follows .
t₁ = 
t is time measured on the earth and t₁ is time measured by man on ship .
A ) Given t = 20 years , t₁ = ? v = .4c

=1.09 x 20
t₁= 21.82 years
B ) Given t = 5 years , t₁ = ? v = .2c

=1.02 x 5
t₁= 5.1 years
C ) Given t = 10 years , t₁ = ? v = .8c

=1.67 x 10
t₁= 16.7 years
D ) Given t = 10 years , t₁ = ? v = .4c

=1.09 x 10
t₁= 10.9 years
E ) Given t = 20 years , t₁ = ? v = .8c

=1.67 x 20
t₁= 33.4 years