A function describing the location and wave-like behavior of an electron in an atom.
The number of electrons in an atom's outermost valence shell governs its bonding behaviour. Elements whose atoms have the same number of valence electrons are grouped together in the Periodic Table. ... Nonmetals tend to attract additional valence electrons to form either ionic or covalent bonds.
Answer:
Polyhydroxyl alcohols
Explanation:
Whenever we have several C-OH bonds, we have a polyhydroxyl alcohol. For example, if we have just one alcohol group, that is, an R-OH group, then the naming is simple, say, we have EtOH, it's ethanol.
The problem becomes more complicated when we have several hydroxyl groups present in the alcohol. Let's say we have an ethane molecule and we replace the hydrogen atoms of carbon 1 and 2 with hydroxyl groups. In that case, we have 1,2-ethanediol. Similarly, we can have triols etc.
That said, we have poly (several) hydroxyl groups and we can generalize this to having polyhydroxyl alcohols.
Answer:
B is a precipitation reaction.
Explanation:
This is because a precipitation reaction is when a solid is made from the combination of cations and anions in a solution to create a solid.
The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2