Out of the two, the forces between water molecules and chromium and chloride ions is greater. This is proven by the fact that chromium chloride is slightly soluble in water, about 565 grams per liter.
In order for a substance to be soluble, the attraction of the ions to the water molecules must exceed the attraction between its own molecules and the water molecules.
Answer:
Specific heat of alloy = 0.2 j/ g.°C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of bold = 25 g
Heat absorbed = 250 J
Initial Temperature = 25°C
Final temperature = 78°C
Specific heat of alloy = ?
Solution:
Change in temperature:
ΔT = 78°C - 25°C
ΔT = 53°C
Now we will put the values in formula.
Q = m.c. ΔT
250 j = 25 g × c ×53°C
250 j = 1325 g.°C × c
250 j / 1325 g.°C = c
c = 0.2 j/ g.°C
Nod s wit efviuosdviu freaky. Reckon vomit woke ko3q vkwerk
Rn vkbko etbok rvinrv
Answer:
1.395J/g°C
Explanation:
The following were obtained from the question:
Q = 6527J
M = 312g
ΔT = 15°C
C =?
Q = MCΔT
C = Q/MΔT
C = 6527/(312 x 15)
C = 1.395J/g°C
The specific heat capacity of the substance is 1.395J/g°C
Atomic mass of Sulfur = 32g
32g of Sulfur is one mole.
1g of Sulfur is
96.21g of Sulfur is