<u>Answer</u>
To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use<em>. </em>
<u>Explanation</u>
A vernier caliper is an instrument that is used to measure the diameter of small circular objects such as diameter of a wires, thickness of an iron sheet.
The objects to be measured is place between the jaws of the calipers.
The vernier scale has two scales, the vernier scale and the main scale which is the very top scale.<em> To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use. </em>
Biology, Chemistry and Physics
You find net charge by subtracting the number of electrons from the number of protons (since protons are positive and electrons are negative). 9 - 10 = -1
Answer:
150m
Explanation:
The relation of speed/time and distance/time is a derivative/integral one, as in speed is the derivative of distance (the faster you go, the faster the distance changes, duh!).
So we need to compute the integral of speed over time from 0.0s to 5.0s.
The easiest way here is to compute the area under the line (it's going to be faster than computing the acceleration and using a formula of distance based on acceleration).
The area under the line is a trapezoid with "height" 5s, and the bases 10m/s and 50m/s. Using the trapezoid area formula of h*(a + b)/2
distance = 5s * (10m/s + 50m/s) / 2 = 5s * 60m/s / 2 = 5s * 30m/s = 150m
Alternatively, we can use the acceleration formula:
a = (50m/s - 10m/s)/5s = 40m/s / 5s = 8m/s^2
distance = v0 * t + a * t^2 / 2 = 10m/s * 5s + 8m/s^2 * (5s)^2 / 2 = 50m + 8m * 25 / 2 = 50m + 100m = 150m.