Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there
Without an atmosphere, the equatorial curve would show minimum daily values on the solstices in June when the sub-solar point is located at 23.5°N and in December when the sub-solar point is at 23.5°S latitude.
Explanation:
At the sub-solar point, the sun strikes directly at the surface with an angle of 90 degrees at a given point.
Solistice refers to that point in time when the sun’s zenith is located at the farthest point from the equator.
During summer solistice on June 21, the sun’s zenith reaches northernmost point, sub-solar point is fixed at 23.5°S Tropic of Cancer making the earth tilt 23.4 degrees
During winter soliscitse on December 21, the sub-solar point is fixed at) Tropic of Capricorn.
Answer:



Explanation:
By analyzing the torque on the wheel we get:
Solving for T: 
On the object:
Replacing our previous value for T:

The relation between angular and linear acceleration is:

So,

Solving for α:

The linear acceleration will be:

And finally, the tension will be:

These are the values of all the variables: α, a, T
Answer:
- The emf of the generator is 6V
- The internal resistance of the generator is 1 Ω
Explanation:
Given;
terminal voltage, V = 5.7 V, when the current, I = 0.3 A
terminal voltage, V = 5.1 V, when the current, I = 0.9 A
The emf of the generator is calculated as;
E = V + Ir
where;
E is the emf of the generator
r is the internal resistance
First case:
E = 5.7 + 0.3r -------- (1)
Second case:
E = 5.1 + 0.9r -------- (2)
Since the emf E, is constant in both equations, we will have the following;
5.1 + 0.9r = 5.7 + 0.3r
collect similar terms together;
0.9r - 0.3r = 5.7 - 5.1
0.6r = 0.6
r = 0.6/0.6
r = 1 Ω
Now, determine the emf of the generator;
E = V + Ir
E = 5.1 + 0.9x1
E = 5.1 + 0.9
E = 6 V
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.
