1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
7

22. In an experiment to determine the density of a soil using a density bottle, the following measuren were recorded. Mass of em

pty density bottle = 42.9g Mass of density bottle full of water = 66.1g Mass of density bottle with some soil = 67.2g Mass of density bottle with soil filled up with water = 82.0g Use the above data to determine the a) Mass of water that completely filled the bottle (2 b) Volume of water that completely filled the bottle​
Physics
1 answer:
Delicious77 [7]3 years ago
4 0

Answer:1

Explanation:1

You might be interested in
A subway train is traveling at 22.2 m/s when it approaches a slower train 50m ahead traveling in the same direction at 6.94 m/s.
Amiraneli [1.4K]

Answer:

Time that they collide = 4.99s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Explanation:

We will use the equations of motion to obtain the solution required

At time t = 0

speed of first train = 22.2 m/s

Initial space between the two trains = 50 m

Speed of second train = 6.94 m/s

For the first car, distance covered by the first train = y

y = distance covered between the beginning of the deceleration and the point where the the two trains hit one another.

u = initial velocity = 22.2 m/s

t = time taken for all this to happen

a = deceleration = - 2.1 m/s²

y = ut + (1/2)at²

y = 22.2t - 1.05t² (eqn 1)

For the second train,

At t = 0, y = 50 m

Let the new distance moved by the second train before collision = (y - 50)

u = initial velocity = 6.94 m/s

t = time taken = t

a = acceleration of the second train = 0 m/s² (constant velocity)

(y - 50) = ut + (1/2)at²

y - 50 = 6.94t

y = 6.94t + 50 (eqn 2)

substituting for y in eqn 2 using the expression obtained in eqn 1

y = 22.2t - 1.05t²

y = 6.94t + 50

22.2t - 1.05t² = 6.94t + 50

1.05t² - 15.26t + 50 = 0

Solving this quadratic equation

t = 4.99 s or 9.54 s

The position of the two trains are the same at those two times, but the first time is when they hit each other.

t = 4.99 s

At 4.99 s, the the velocity of the first train

v = u + at

v = 22.2 + (-2.1×4.99) = 11.721 m/s in the same direction as the second train.

Relative velocity at this point will be

= 11.721 - 6.94 = 4.781 m/s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Hope this Helps!!!

4 0
3 years ago
The data table for the decomposition reaction of hydrogen peroxide H2 O2 shows how the reaction rate changes over time which sta
DedPeter [7]

I believe the answer is A.

4 0
3 years ago
Read 2 more answers
The order of elements in the periodic table is based on the atomic number.<br> true or false
kirill [66]
True the elements are ordered in the atomic number
4 0
3 years ago
Which statement is true about a planet’s orbital motion?
lana66690 [7]

Answer:

Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

Explanation:

The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.

When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.

The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.

The velocity of the orbit is given by the relation,

                                    V = \sqrt{\frac{GM}{R + h} }

Where

                   V - velocity of the orbit at a height h from the surface

                    R - Radius of the second object

                    G - Gravitational constant

                    h - height from the surface

The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

                         1/2 mV^{2} = GMm/R

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.

3 0
3 years ago
Two objects of the same size are both perfect blackbodies. One has a temperature of 3000 K, so its frequency of maximum emission
bija089 [108]

Answer:

a) The colder body (3000k), b) hearter body c) 12000K body

Explanation:

This exercise should know the power emitted by the objects and the distribution of this emission in the energy spectrum, for this we will use Stefan's laws and that of Wien's displacement

Stefan's Law                     P = σ A e T⁴

Wien displacement law   λ T = 2,898 10⁻³ m K

Let's calculate the power emitted for each object.

As they are perfect black bodies e = 1, they also indicate that they have the same area

T = 3000K

       P₁ = σ A T₁⁴

T = 12000K

       P₂ = σ A T₂⁴

       P₂ / P₁ = T₂⁴ / T₁⁴

       P₂ / P₁ = (12000/3000)⁴

       P₂ / P₁ = 256

This indicates that the hottest body emission is 256 times the coldest body emission.

Let's calculate the maximum emission wavelength

Body 1

T = 3000K

       λ T = 2,898 10-3

       λ₁ = 2.89810-3 / T

       λ₁ = 2,898 10-3 / 3000

       λ₁ = 0.966 10-6 m

      λ₁ = 966 nm

T = 12000K

      λ₂ = 2,898 10-3 / 12000

      λ₂ = 0.2415 10-6 m

      λ₂ = 214 nm

a) The colder body (3000k) emits more light in the infrared, since the emission of the hot body is at a minimum (emission tail)

b) The two bodies have emission in this region, the body of 3000K in the part of rise of the emission and the body to 12000K in the descent of the emission even when this body emits 256 times more than the other, so this body should have the highest broadcast in this area

c) The emission of the hottest 12000K body is mainly in UV

d) The hottest body emits more energy in UV and visible

e) No body has greater emission in all zones

5 0
3 years ago
Other questions:
  • A sample of 4.50 g of methane occupies 12.7 dm3 at 310 K. (a) Calculate the work done when the gas expands isothermally against
    10·1 answer
  • Specific heat depends on several factors. Pick the factor below that you suspect will not affect specific heat. composition
    10·1 answer
  • What is the full definition of specific heat?
    15·2 answers
  • Why does the uv from the sun hurt our eyes. Plz help
    11·1 answer
  • I don't understand it asking me what the earth look like when the moon is a new moon​
    6·2 answers
  • How far away is the sun?
    5·1 answer
  • How much dirt is there in a hole 3 feet deep, 6 ft long and 4 ft wide?
    12·2 answers
  • What creates a mechanical turning force in an
    12·1 answer
  • What is so soothing about the ocean? And why are some people afraid of the ocean?
    9·2 answers
  • How does drag affect the cost of owning a car?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!