No it is a chemical change
Answer:
IMA = 2.5 metres
EFFICIENCY = 80%
Explanation:
The AMA of a machine is referred to as the Actual Mechanical Advantage of a machine, calculated as the ratio of the output to the input force.
The Ideal Mechanical Advantage is the ratio of the input distance to the output distance.
From the diagram, the input distance which is also the distance moved by effort = 5metres
The load distance (output distance) = 2 metres
IMA = INPUT DISTANCE / OUTPUT DISTANCE
IMA = 5metres / 2 metres = 2.5 meters
Efficiency is the ratio of AMA TO IMA
AMA = 2, IMA = 2.5
EFFICIENCY = AMA / IMA
EFFICIENCY = (2 / 2.5) × 100%= 0.8 × 100%
EFFICIENCY = 80%
That's "<em><u>insolation</u></em>" ... not "insulation".
'Insolation' is simply the intensity of solar radiation over some area.
If 200 kW of radiation is shining on 300 m² of area, then the insolation is
(200 kW) / (300 m²) = <em>(666 and 2/3) watt/m²</em> .
Note that this is the intensity of the <em><u>incident</u></em> radiation. It doesn't say anything
about how much soaks in or how much bounces off.
Wait !
I just looked back at the choices, and realized that I didn't answer the question
at all. I have no idea what "1 sun" means. Forgive me. I have stolen your
points, and I am filled with remorse.
Wait again !
I found it, through literally several seconds of online research.
1 sun = 1 kW/m².
So 2/3 of a kW per m² = 2/3 of 1 sun
That's between 0.5 sun and 1.0 sun.
I feel better now, and plus, I learned something.
Acids are danger so stay away
The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.