H2SO.Mgslfurmobile phase in this experiment
Answer:
Here's what I get
Explanation:
Assume the initial concentrations of H₂ and I₂ are 0.030 and 0.015 mol·L⁻¹, respectively.
We must calculate the initial concentration of HI.
1. We will need a chemical equation with concentrations, so let's gather all the information in one place.
H₂ + I₂ ⇌ 2HI
I/mol·L⁻¹: 0.30 0.15 x
2. Calculate the concentration of HI
![Q_{\text{c}} = \dfrac{\text{[HI]}^{2}} {\text{[H$_{2}$][I$_{2}$]}} =\dfrac{x^{2}}{0.30 \times 0.15} = 5.56\\\\x^{2} = 0.30 \times 0.15 \times 5.56 = 0.250\\x = \sqrt{0.250} = \textbf{0.50 mol/L}\\\text{The initial concentration of HI is $\large \boxed{\textbf{0.50 mol/L}}$}](https://tex.z-dn.net/?f=Q_%7B%5Ctext%7Bc%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BHI%5D%7D%5E%7B2%7D%7D%20%7B%5Ctext%7B%5BH%24_%7B2%7D%24%5D%5BI%24_%7B2%7D%24%5D%7D%7D%20%3D%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.30%20%5Ctimes%200.15%7D%20%3D%20%205.56%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%200.30%20%5Ctimes%200.15%20%5Ctimes%205.56%20%3D%200.250%5C%5Cx%20%3D%20%5Csqrt%7B0.250%7D%20%3D%20%5Ctextbf%7B0.50%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20initial%20concentration%20of%20HI%20is%20%24%5Clarge%20%5Cboxed%7B%5Ctextbf%7B0.50%20mol%2FL%7D%7D%24%7D)
3. Plot the initial points
The graph below shows the initial concentrations plotted on the vertical axis.
Phosphoric acid. Also known as orthophosphoric acid in or phosphoric(V) acid, is a weak acid with the chemical formula H3PO4. The pure compound is a colorless solid.
Answer:
(a) ΔSº = 216.10 J/K
(b) ΔSº = - 56.4 J/K
(c) ΔSº = 273.8 J/K
Explanation:
We know the standard entropy change for a given reaction is given by the sum of the entropies of the products minus the entropies of reactants.
First we need to find in an appropiate reference table the standard molar entropies entropies, and then do the calculations.
(a) C2H5OH(l) + 3 O2(g) ⇒ 2 CO2(g) + 3 H2O(g)
Sº 159.9 205.2 213.8 188.8
(J/Kmol)
ΔSº = [ 2(213.8) + 3(188.8) ] - [ 159.9 + 3(205.) ] J/K
ΔSº = 216.10 J/K
(b) CS2(l) + 3 O2(g) ⇒ CO2(g) + 2 SO2(g)
Sº 151.0 205.2 213.8 248.2
(J/Kmol)
ΔSº = [ 213.8 + 2(248.2) ] - [ 151.0 + 3(205.2) ] J/K = - 56.4 J/K
(c) 2 C6H6(l) + 15 O2(g) 12 CO2(g) + 6 H2O(g)
Sº 173.3 205.2 213.8 188.8
(J/Kmol)
ΔSº = [ 12(213.8) + 6(188.8) ] - [ 2(173.3) + 15( 205.2) ] = 273.8 J/K
Whenever possible we should always verify if our answer makes sense. Note that the signs for the entropy change agree with the change in mol gas. For example in reaction (b) we are going from 4 total mol gas reactants to 3, so the entropy change will be negative.
Note we need to multiply the entropies of each substance by its coefficient in the balanced chemical equation.
I am not sure if you have any questions or need any further information please login to your mom do you have any questions or need