Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
Answer:
Acceleration
Explanation:
can you mark me brainlies
So, if an object travels in a curved path, it changes velocity, and, thus, accelerates. This acceleration must be tied to a force. ... Therefore, whenever an object travels in a curved path, there must be an unbalanced force acting upon it. It is important to understand that all this may occur without a change in speed.t
It causes or makes a magnetic field.
Answer:
The momentum of an object is defined as the mass of the object times the velocity of the object, as P = m*v.
So the equipment needed would be:
Something to measure the mass of the object, like a balance.
Something to measure the speed of the object, like a doppler radar, or a simpler thing may be a cronometer, with that you can measure the amount of time that the object needs to travel a given distance, and with that you can obtain the speed of the object.
Now you can notice that speed is different than velocity, this is true, velocity is a vector, so this has a direction, then you need something to fix the direction in which the object moves, in this way you can determine the velocity.
Answer:
Perpendicular to the electric field and magnetic field
Explanation:
Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.
EM waves have both Electrical and magnetic features.
they travel in the velocity of light (3*10⁸ ms⁻¹)
they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other
They travel perpendicular to each of those electric and magnetic fields.