Explanation:
In the given situation two forces are working. These are:
1) Electric force (acting in the downward direction) = qE
2) weight (acting in the downward direction) = mg
Therefore, work done by all the forces = change in kinetic energy
Hence,
It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight and the above equation will be as follows.

v = 
= 592999 m/s
Since, the electron is travelling downwards it means that it looses the potential energy.
Data Analysis and Conclusion
Answer:
α = 2,857 10⁻⁵ ºC⁻¹
Explanation:
The thermal expansion of materials is described by the expression
ΔL = α Lo ΔT
α = 
in the case of the bar the expansion is
ΔL = L_f - L₀
ΔL= 1.002 -1
ΔL = 0.002 m
the temperature variation is
ΔT = 100 - 30
ΔT = 70º C
we calculate
α = 0.002 / 1 70
α = 2,857 10⁻⁵ ºC⁻¹
Answer:
a) From definition a transverse wave is which one where the elements moves perpendicular to the direction of the wave. For example is a wave is moving from the left to the right the elements would be wibrating or moving upward or downward.
We have a lot examples for a transverse wave. For example water waves, strings on the musical instruments , light and radio waves.
b) We can identify a transverse wave if the particles are displaced perpendicular to the direction of the wave. Usually these types of wave occur in elastic solids. And we can identify it when we see a pattern perpendicular between the wave direction and the particles motion. In simple words we need to see that the wave is moving down and up.
Explanation:
Part a
From definition a transverse wave is which one where the elements moves perpendicular to the direction of the wave. For example is a wave is moving from the left to the right the elements would be wibrating or moving upward or downward.
We have a lot examples for a transverse wave. For example water waves, strings on the musical instruments , light and radio waves.
Part b
We can identify a transverse wave if the particles are displaced perpendicular to the direction of the wave. Usually these types of wave occur in elastic solids. And we can identify it when we see a pattern perpendicular between the wave direction and the particles motion. In simple words we need to see that the wave is moving down and up.