1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
8

This is for 6.02 in comprehensive science for flvs

Physics
1 answer:
Katen [24]3 years ago
4 0

Answer:

Please provide an image to help clarify

Explanation:

thanks :)

You might be interested in
In thermodynamics, work is typically done by
kondor19780726 [428]
The answer is gases
3 0
3 years ago
A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and
Nastasia [14]

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=\frac{B}{g}-m=\frac{4159 N}{9.8 m/s^2}-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

4 0
3 years ago
An experiment is conducted such that an applied force is exerted on a 5kg object as it travels across a horizontal surface in wh
Katen [24]

If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.

The  graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.

  • A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m

For more information on work done, visit

brainly.com/subject/physics

5 0
3 years ago
Read 2 more answers
B. Find the velocity of a rider on the ride.
Stells [14]

D

Explanation:

Mutiply and alagrab to subterc

5 0
3 years ago
What is an example of kinetic energy
Olenka [21]

An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.

6 0
3 years ago
Other questions:
  • A forensic scientist receives an unknown liquid. Upon close observation, it appears there may be small objects floating in the l
    9·1 answer
  • An electron is trapped in an infinite square-well potential of width 0.6 nm. If the electron is initially in the n = 4 state, wh
    6·1 answer
  • A speeder is pulling directly away and increasing his distance from a police car that is moving at 24 m/s with respect to the gr
    15·1 answer
  • Kim throws a beach ball up in the air. It reaches its maximum height 0.50s later. We can ignore air resistance. What was the bea
    15·2 answers
  • Object that is relatively close to mirror ray diagrams for convex mirrors
    15·1 answer
  • A baseball (m=140g) traveling 32m/s moves a fielders
    6·1 answer
  •  Why are radio waves safer to humans than X- Rays
    8·1 answer
  • A car 4m long moving at a velocity of 25m/s was beside a lorry 20m long with a velocity 19m/s at t=0. The distance between them
    6·1 answer
  • What are two uses of total internal reflection? (GCSE Physics)
    14·1 answer
  • a 1020-hertz sound wave travels at 340 m/s in air with a wavelength of a) 30 m. b) 3 m. c) 0.333 m. d) 1 m. e) none of the above
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!