Answer:
<h2>Solving elastic collisions problem the hard way</h2><h3 />
Explanation:
perfect drawing
According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!
Answer:
An asteroid impact could affect the tilt of the Earth due to the force it applies onto the planet. This would change Earth's seasons due to the fact that Earth's tilt causes seasons.
Answer:0.6kw
Explanation:
Power=force×velocity
Power=20×30=600w
In kw it's going to be 600/1000=0.6kw
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 