Same time
..................
Answer:
Torque,
Explanation:
Given that,
The loop is positioned at an angle of 30 degrees.
Current in the loop, I = 0.5 A
The magnitude of the magnetic field is 0.300 T, B = 0.3 T
We need to find the net torque about the vertical axis of the current loop due to the interaction of the current with the magnetic field. We know that the torque is given by :

Let us assume that, 
is the angle between normal and the magnetic field, 
Torque is given by :

So, the net torque about the vertical axis is
. Hence, this is the required solution.
Answer:
Gpe = 15680 Joules
Explanation:
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;
G.P.E = mgh
Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Given the following data;
Mass = 20 kg
Height = 80 m
We know that acceleration due to gravity is equal to 9.8 m/s²
To find the gravitational potential energy;
Gpe = mgh
Gpe = 20 * 80 * 9.8
Gpe = 15680 Joules
The work done by the man pushing the car over the given distance is 1000J.
Given the data in the question;
- Mass of car;

- Acceleration of the car;

- Distance covered by the car;

Work done;
<h3>Work done</h3>
Work done is simply defined as the energy transfer that takes place when an object is either pushed or pulled over a certain distance by an external force. It is expressed as;

Where f is force applied and d is distance travelled.
To determine the work done by the man, we first solve for the force applied F.
From Newton's Second Law; 
We substitute our given values into the expression

Next we substitute our values into the expression of work done above.

Therefore, the work done by the man pushing the car over the given distance is 1000J.
Learn more about work done: brainly.com/question/26115962
The top of the trajectory is the point where it changes from rising to falling. At that exact instant, its vertical speed is zero.