i hate this question.
Conservation of momentum - is when the total momentum before and after collision is equal.
Here is the formula darling,
p = p
mv = mv
See the pic for example. HmpH
The answer to this is initial appearance and the second is final appearance.
Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Answer:
The automobile's acceleration in that time interval is -2 m/s^2
Explanation:
The acceleration is defined as the rate of change of the velocity.
The average acceleration in a given lapse of time is calculated as:
A = (final velocity - initial velocity)/time.
In this case, we have:
initial velocity = 31 m/s
final velocity = 15 m/s
time = 8 seconds.
Then the average acceleration is:
A = (15m/s - 31m/s)/8s = -2 m/s^2
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>