1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentina_108 [34]
2 years ago
14

What is the value of n in the balmer series for which the wavelength is 410.2 nm.?

Physics
1 answer:
m_a_m_a [10]2 years ago
3 0

The answer is n= 6.

What is Balmer series?

The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.

For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.

To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.

To learn more about emission spectrum click on the link below:

brainly.com/question/24213957

#SPJ4

You might be interested in
A 13 kg hanging sculpture is suspended by a 95-cm-long, 5.0 g steel wire. When the wind blows hard, the wire hums at its fundame
Artyom0805 [142]

Answer:

f=81.96 \ Hz

Explanation:

Givens

L=95cm

m_{sculpture} =13kg

m_{wire}=5g

The frequency is defined by

f=\frac{v}{\lambda}

Where v is the speed of the wave in the string and \lambda is its wave length.

The wave length is defined as \lambda = 2L = 2(0.95m)=1.9m

Now, to find the speed, we need the tension of the wire and its linear mass density

v=\sqrt{\frac{T}{\mu} }

Where \mu=\frac{0.005kg}{0.95m}= 5.26 \times 10^{-3} and the tension is defined as T=m_{sculpture} g=13kg(9.81 m/s^{2} )=127.53N

Replacing this value, the speed is

v=\sqrt{\frac{127.53N}{5.26 \times 10^{-3} } }=155.71 m/s

Then, we replace the speed and the wave length in the first equation

f=\frac{v}{\lambda}\\f=\frac{155.71 m/s}{1.9m}\\ f=81.96Hz

Therefore, the frequency is f=81.96 \ Hz

3 0
3 years ago
Read 2 more answers
Which question could be tested in a scientific manner?
andrey2020 [161]
The questions from this lot which could be tested in a scientific manner would be "what causes some people to be color-blind"
and
"what are the best shoes to wear when exercising"
Both of these questions can be tested in a scientific way through an experiment. 
5 0
3 years ago
‼️‼️ Please help, urgent ‼️‼️ (check photo)
Alex787 [66]

Answer: The force constant k is 10600 kg/s^2

Step by step:

Use the law of energy conservation. When the elevator hits the spring, it has a certain kinetic and a potential energy. When the elevator reaches the point of still stand the kinetic and potential energies have been transformed to work performed by the elevator in the form of friction (brake clamp) and loading the spring.

Let us define the vertical height axis as having two points: h=2m at the point of elevator hitting the spring, and h=0m at the point of stopping.

The total energy at the point h=2m is:

E_{tot}=E_{kin}+E_{pot}\\E_{tot}= \frac{1}{2}mv^2+mg\Delta h = \frac{1}{2}2000 kg 4^2\frac{m^2}{s^2}+2000kg\, 9.8\frac{m}{s^2}2m=55200\,kg\frac{m^2}{s^2}

The total energy at the point h=0m is:

E_{tot}=E_{kin}+E_{pot}+Work=0+0+ Work\\E_{tot} =F_{friction}\Delta h+\frac{1}{2}k (\Delta h)^2=17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2

The two Energy values are to be equal (by law of energy conservation), which allows us to determine the only unknown, namely the force constant k:

17000N\cdot 2m+\frac{1}{2}k\cdot 2^2 m^2 = 55200 \,kg\frac{m^2}{s^2}\\k = \frac{55200-34000}{2}\,\frac{kg}{s^2}=10600\frac{kg}{s^2}

5 0
3 years ago
16. Compared to your weight and mass on Earth, if you were on the moon: *
Natalija [7]

Answer:

The answer is D.

Explanation:

There is no gravity in Space so that means that it will decrease your weight but not your mass.

<h2><u><em>Please give Brainiest</em></u></h2>
5 0
4 years ago
1. Which Law? When you are standing up in a subway train, and the train suddenly stops, your body continues to go forward.
riadik2000 [5.3K]

1. Law 1, since there is no other force acting on your body as you stand there, so you will continue to go forward.

2. Law 3, since the swimmer is using opposite forces to propel herself through the water. She generates a force by pushing the water which helps to push her forward.

3. Law 2, since you are giving the motorcycle more energy as a result of the gas being transformed into the energy that helps to accelerate the motorcycle's speed.

6 0
3 years ago
Other questions:
  • A proton is moving toward a stationary charged particle. Which statement correctly describes an energy change that could occur a
    7·2 answers
  • 162 x [ 6 ( 7 x 4²) ]<br><br> I got 108,864, Is this correct?
    12·1 answer
  • a quantity of n2 gas originally held at 4.75 atm pressure in a 1.00-L container at 26c is transerred to a 10.0-L container at 20
    15·2 answers
  • A series circuit that is connected to a 50 V, 60 Hz source is made up of 25 ohm resistor, capacite wieh X= 18 ohms, and inductor
    13·1 answer
  • What name is given to the variable we plot on the x-axsis
    6·1 answer
  • What steps are involved in converting potential energy to kinetic energy, or kinetic energy to potential energy?
    5·1 answer
  • 4. Which activity would be BEST for prolonged training within your target heart rate zone?
    8·1 answer
  • A coil of resistance 100ohm is placed in a magnetic field of 1mWb the coil has 100 turns and a galvanometer of 400ohm resistance
    13·1 answer
  • A wave travels one complete cycle in20sec and has wavelength of 1000mm.what is the speed​
    8·1 answer
  • 17. The four points built into the camera to ensure that each exposure can be oriented
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!