<span>If your options are:
A.Both momentum and kinetic energy are vector quantities.
B.Momentum is a vector quantity and kinetic energy is a scalar quantity.
C.Kinetic energy is a vector quantity and momentum is a scalar quantity.
D.Both momentum and kinetic energy are scalar quantities.
</span>
The answer on the question given is letter B.<span>Momentum is a vector quantity and kinetic energy is a scalar quantity.</span>
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.
Answer:
The biggest factor affecting coastal erosion is the strength of the waves breaking along the coastline. A wave's strength is controlled by its fetch and the wind speed. Longer fetches & stronger winds create bigger, more powerful waves that have more erosive power.
Explanation:
hope it helps !
Answer:
For further investigation see also the most recent World Population Data ... and Latin America and the Caribbean, and the regions of Melanesia, ... While Germany's death rate exceeds its birth rate, its population ... Population growth accelerated.
Answer:
stone A is diamond.
Explanation:
given,
Volume of the two stone = 0.15 cm³
Mass of stone A = 0.52 g
Mass of stone B = 0.42 g
Density of the diamond = 3.5 g/cm³
So, to find which stone is gold we have to calculate the density of both the stone.
We know,


density of stone A


density of stone B.


Hence, the density of the stone A is the equal to Diamond then stone A is diamond.