<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
Answer:
2583.9 N/C
Explanation:
Parameters given:
Outer diameter = 14 cm
Outer radius, R = 7cm = 0.07m
Inner diameter = 7 cm
Inner radius, r = 3.5 cm = 0.035m
Charge of washer = 8 nC = 8 * 10^(-9)C
Distance from washer, z = 33 cm = 0.33m
The electric field due to a washer (hollow disk) is given as:
E = k * σ * 2π [ 1 - z/(√(z² + R²)]
Where σ = charge per unit area
σ = q/π(R² - r²)
σ = 8 * 10^(-9) /(π*(0.07 - 0.035)²)
σ = 2.077 * 10^(-6) C/m²
=> E = 9 * 10^9 * 2.077 * 10^(-6) * 2π * [1 - 0.33/(√(0.33² + 0.07²)]
E = 117.467 * 10^3 * (1 - 0.978)
E = 117.467 * 10^3 * 0.022
E = 2583.9 N/C
Explanation:
this is my answer this is helpful for you
Answer:
Explanation:
Given
Diameter of Pulley=10.4 cm
mass of Pulley(m)=2.3 kg
mass of book
height(h)=1 m
time taken=0.64 s


![a=4.88 m/s^2and [tex]a=\alpha r](https://tex.z-dn.net/?f=a%3D4.88%20m%2Fs%5E2%3C%2Fp%3E%3Cp%3Eand%20%5Btex%5Da%3D%5Calpha%20r)
where
is angular acceleration of pulley


And Tension in Rope


T=8.364 N
and Tension will provide Torque




Thus mass is uniformly distributed or some more towards periphery of Pulley