Answer:
Explanation:
One of the properties of a liquid is that, <u>it's particles move freely (not tightly packed)</u> hence the reason for <u>it's free flowing (no definite shape)</u> when shaken in a container, unlike a solid whose <u>particles are tightly packed with restricted/no movement</u> and hence the reason for it's compactness and it's definite shape.
When a plastic solid (whose particle is tightly packed and have a restricted movement/no movement) is placed near a heat source, <u>it's particles gains energy in the process and starts to move (though slightly free) and become less tightly packed</u> hence the reason it is observed that plastic solids near a heat source melts.
From the above, it can be deduced that a liquid and a plastic solid near a heat source <u>have there particles move freely (and not tightly packed) hence making the two substances flow freely with no definite shape.</u>
The total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
<h3>
Heat evolved in converting the steam to ice</h3>
The total heat evolved is calculated as follows;
Q(tot) = Q1(steam to boiling point) + Q2(boiling point to ice) +Q3(freezing to -42 ⁰C)
where;
Q = = mcΔθ
where;
- m is mass, (mass of water = 18 g/mol)
- c is specific heat capacity,
- Δθ is change in temperature
Q(tot) = 2(18)(2.01)(100 - 135) + 2(18)(2.01)(0 - 100) + 2(18)(2.09)(-42 - 0)
Q(tot) = -12,928.68 J
Thus, the total quantity of heat evolved in converting the steam to ice is determined as -12,928.68 J.
Learn more about heat here: brainly.com/question/13439286
#SPJ1
Answer: Please see answer below
Explanation:
Mecury vapor lamp is better to use than Sodium vapor light, this is because because
---The Filaments of the lamp in sodium emit fast moving electrons, which causes valence electrons of the sodium atoms to excite to higher energy levels which when electrons after being excited, relax by emitting yellow light which concentrates on the the monochromatic bright yellow part of the visible spectrum which is about 580-590 or about (589nm) which will fall incident on the calibrations making it difficult to see
While
In Mercury vapor lamp, The emitted electrons from the filaments, after having been excited by high voltage, hit the mercury atoms but the excited electrons of mercury atoms relax and emits an ultraviolet uv invisible lights falling on the mecury vapour lamp to produce white light covering a wide range of (380-780 nm) which is visible that is why it is used for calibrations purposes in lightening applications.
Near the coasts and Great Lakes.