Answer:
The time taken for the paint ball to hit the ground is 
The distance of the landing point from the tower is
Explanation:
From the question we are told that
The height of the tower is 
The speed of the paintball in the horizontal direction is 
Generally from kinematic equation we have that

Here u is the initial velocity of the paintball in the vertical direction and the value is 0 m/s , this because the ball was fired horizontally
a is equivalent to 
t is the time taken for the paintball to hit the ground
So

=> 
Generally the distance of its landing position from the tower is

=> 
=>
Answer:
Maximum weight that can be lifted = 18,000 N
Explanation:
Given:
Cross-sectional area of input (A1) = 0.004 m²
Cross-sectional area of the output (A2) = 1.2 m
²
Force (F) = 60 N
Computation:
Pressure on input piston (P1) = F / A1
Assume,
Maximum weight lifted by piston = W
Pressure on output piston (P2) = W / A2
We, know that
P1 = P2
[F / A1] = [W / A2]
[60 / 0.004] = [W / 1.2]
150,00 = W / 1.2
Weight = 18,000 N
Maximum weight that can be lifted = 18,000 N
de Broglie wavelength (λ) is given by the equation
λ = h/p
where h=Planck’s constant whose value is 6.62 x 10^(−34) joule-seconds and
p = momentum of the particle(here electron)
In terms of kinetic energy(E) momentum(p) can be written as,
p=(2mE)^1/2
where m=mass of the particle.
Hence λ becomes
1 λ = h(2mE)^-1/2
Given here, E = 13.6 eV = 13.6×1.6×10^-19 joule
m(mass of electron)= 9.1×10^-31 kg
Putting these values in equation (1) we get ,
λ =0.332×10^(-9) meter
=3.32×10^(-10) meter
=3.32 Å