Answer:
730.4 m
Explanation:
The sound waves travels with a uniform motion (=constant velocity), therefore we can calculate the distance it travels using the formula:

where
d is the distance
v is the speed of the sound wave
t is the time taken
In this problem we have:
v = 332 m/s is the speed of sound in air
t = 2.2 s is the time elapsed
Therefore, the distance between the tower and the person is

Answer: 1.8
Explanation:
You are given
the object distance U = 24.8 cm
Focal length F = 16.0 cm
First find the image distance by using the formula:
1/f = 1/u + 1/v
Where V = image distance
Substitute u and f into the formula
1/16 = 1/24.8 + 1/v
1/ v = 1/16 - 1/24.8
1/v = 0.0625 - 0.04032258
1/v = 0.022177
Reciprocate both sides by dividing both sides by one
V = 45.09 cm
Magnification M is the ratio of image distance to the object distance. That is,
M = V/U
Substitute V and U into the formula
M = 45.09/24.8
M = 1.818
Magnification of the image is therefore equal to 1.8 approximately
Answer:
the DISTANCE between the lever arm and the force is always 90º
Explanation:
In this exercise, you are asked to complete the missing words so that the phrase makes sense.
note that the torque is
τ = F x r
where bold indicates vectors
When the rope is pulled, the DISTANCE between the lever arm and the force is always 90º
Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
Answer:
The answer is 4.55 m/s!
Explanation:
I wish you luck with Acellus! We got 15 days left!
Please mark brainliest.