Election current because voltage is a measurement, information doesn't apply to all electrical devices and the wires within are usually copper bc it conducts and hardly ever will the wires be anything different because copper is cheap
Answer:
The answer is B.
Explanation:
Trust me i took the test already its b.
Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:

If you want to study two different states, an initial state 1 and a final state 2, the following is true:

<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:

Solving:


<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults
Answer:
The electron configuration is [HE] 2s1
Answer:
ΔHorxn = - 11.79 KJ
Explanation:
2 SO 2 ( g ) + O 2 ( g ) ⟶ 2 SO 3 ( g )
The standard enthalpies of formation for SO 2 ( g ) and SO 3 ( g ) are Δ H ∘ f [ SO 2 ( g ) ] = − 296.8 kJ / mol Δ H ∘ f [ SO 3 ( g ) ] = − 395.7 kJ / mol
From the reaction above, 2 mol of SO2 reacts to produce 2 mol of SO3. Assuming ideal gas behaviour,
1 mol = 22.4l
x mol = 2.67l
Upon cross multiplication and solving for x;
x = 2.67 / 22.4 = 0.1192 mol
0.1192 mol of SO2 would react to produce 0.1192 mol of SO3.
Amount of heat is given as;
ΔHorxn = ∑mΔHof(products) − ∑nΔHof(reactants)
Because O2(g) is a pure element in its standard state, ΔHοf [O2(g)] = 0 kJ/mol.
ΔHorxn = 0.1192 mol * (− 395.7 kJ / mol) - 0.1192 mol * ( − 296.8 kJ / mol)
ΔHorxn = - 47.17kj + 35.38kj
ΔHorxn = - 11.79 KJ