Answer:
1. Main sequence stars have different masses. The common characteristic they have is their source of energy. They burn fuel in their core through the process of fusing hydrogen atoms into helium.
2. Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
3. Supergiants develop when massive main-sequence stars run out of hydrogen in their cores.
4. a supernova occur When the pressure drops low enough in a massive star, gravity suddenly takes over and the star collapses in just seconds. This collapse produces the explosion.
5. when a star has reached the end of its life and explodes in a brilliant burst of light
Explanation:
During endothermic phase change, the potential energy of the system always increases while the kinetic energy of the system remains constant. The potential energy of the reaction increases because energy is been added to the system from the external environment.
<u>Explanation</u>:
- Those are three distinct methods for demonstrating a specific energy condition of an object. They don't affect one another.
- "Potential Energy" is a relative term showing a release of possible energy to the environment. If we accept its pattern as the overall energy state of a compound, at that point, an endothermic phase change would infer an increase in "potential" as energy is being added to the compound by the system.
- A phase change will display an increase in the kinetic energy at whatever point the compound is transforming from a high density to a low dense phase. The kinetic energy will decrease at whatever point the compound is transforming from a less dense to high dense phase.
Explanation:
2.658x 10 to the 23 power
B I think lol when something changes the state of matter