Answer:
6.022 ×10(index 23) / 7.5 = 0.8293 ×10(index 23)
Explanation:
molar mass of C = 12gmol
therefore in 12g of C there is one mole or an amount of 6.022 ×10(index 23)
∴12g/6.02210(index 23) ×1.6g
Answer:
pH = 4.27. Porcentaje de disociación: 0.03%
Explanation:
El pH de un ácido débil, HX, se obtiene haciendo uso de su equilibrio:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
Donde la constante de equilibrio, Ka, es
Ka = 1.65x10⁻⁸ = [H⁺] [X⁻] / [HX]
Como los iones H⁺ y X⁻ vienen del mismo equilibrio podemos decir:
[H⁺] = [X⁻]
[HX] es:
20g * (1mol/55g) = 0.3636moles / 2.100L = 0.1732M
Reemplazando es Ka:
1.65x10⁻⁸ = [H⁺] [H⁺] / [0.1732M]
2.858x10⁻⁹ = [H⁺]²
5.35x10⁻⁵M = [H⁺]
pH = -log[H⁺]
<h3>pH = 4.27</h3>
El porcentaje de disociacion es [X⁻] / [HX] inicial * 100
Reemplazando
5.35x10⁻⁵M / 0.1732M * 100
<h3>0.03%</h3>
Answer:

Explanation:
Hello.
In this case, taking into account that HCl has one molecule of hydrogen per mole of compound which weights 36.45 g/mol, we compute the number of molecules of hydrogen in hydrochloric acid by considering the given mass and the Avogadro's number:

Now, from the 180 g of water, we see two hydrogen molecules per molecule of water, thus, by also using the Avogadro's number we compute the molecules of hydrogen in water:

Thus, the total number of molecules turns out:

Regards.
Answer:
The answer to your question is given below.
Explanation:
Potassium (K) has 19 electrons with electronic configuration of 2, 8, 8, 1.
Fluorine (F) has 9 electrons with electronic configuration of 2, 7.
Fluorine needs 1 electron to complete it's octet configuration.
Hence, potassium (K), will lose 1 electron to fluorine (F) to form potassium ion (K+) with electronic configuration of 2, 8, 8. The fluorine atom (F) will receive the 1 electron from potassium to form the fluoride ion (F-) with electronic configuration of 2, 8.
**** Please see attached photo for further details.
Answer:
a new scientific discovery that benefits the environment