pH=4.625
The classification of this sample of saliva : acid
<h3>Further explanation</h3>
The water equilibrium constant (Kw) is the product of concentration
the ions:
Kw = [H₃O⁺] [OH⁻]
Kw value at 25° C = 10⁻¹⁴
It is known [OH-] = 4.22 x 10⁻¹⁰ M
then the concentration of H₃O⁺:
![\tt 10^{-14}=4.22\times 10^{-10}\times [H_3O^+]\\\\(H_3O^+]=\dfrac{10^{-14}}{4.22\times 10^{-10}}=2.37\times 10^{-5}](https://tex.z-dn.net/?f=%5Ctt%2010%5E%7B-14%7D%3D4.22%5Ctimes%2010%5E%7B-10%7D%5Ctimes%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%28H_3O%5E%2B%5D%3D%5Cdfrac%7B10%5E%7B-14%7D%7D%7B4.22%5Ctimes%2010%5E%7B-10%7D%7D%3D2.37%5Ctimes%2010%5E%7B-5%7D)
pH=-log[H₃O⁺]
Saliva⇒acid(pH<7)
Answer:
1. V2.
2. 299K.
3. 451K
4. 0.25 x 451 = V2 x 299
Explanation:
1. The data obtained from the question include:
Initial volume (V1) = 0.25mL
Initial temperature (T1) = 26°C
Final temperature (T2) = 178°C
Final volume (V2) =.?
2. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K
3. Conversion from celsius to Kelvin temperature.
T(K) = T (°C) + 273
Final temperature (T2) = 178°C
Final temperature (T1) = 178°C + 273 = 451K
4. Initial volume (V1) = 0.25mL
Initial temperature (T1) = 299K
Final temperature (T2) = 451K
Final volume (V2) =.?
V1 x T2 = V2 x T1
0.25 x 451 = V2 x 299
Answer:
1.5 × 10² mL
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 1.9 atm
- Initial volume of the gas (V₁): 80 mL
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final volume of the gas (V₂): ?
Step 2: Calculate the final volume of the gas
For an ideal gas, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 1.9 atm × 80 mL/1.0 atm
V₂ = 1.5 × 10² mL
Since the pressure decreased, the volume of the gas increased.