7.86 is the pOH of water at this temperature of 100 degrees celsius.
Option E is the right answer.
Explanation:
Data given:
Kw = 51.3 x 
pOH = ?
we know that pure water is neutral and will have pH pf 7.
The equation for relation between Kw and H+ and OH- ion is given by:
Kw = [H+] [OH-}
here the concentration of H+ ion and OH- ion is equal
so, [H+]= [OH-]
Putting the values in the equation of Kw
pKw = -log[Kw]
pKw = -log [51.3 x
]
pKw = 12.28
since H+ ion OH ion concentration is equal the pH of water is half i.e. 6.14
Now, pOH is calculated by using the equation:
14 = pOH + pH
14- 6.14 = pOH
pOH = 7.86
<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>
Answer:
The red light is refracted least. The violet light is refracted most.
Explanation:
<span>Formula of the 20 common amino acids. The formula of an amino acid comprises, bound to a carbon (alpha carbon): a carboxyl group -COOH. an amine group -NH2.</span>