Missing question:
Chemical reaction: H₂ <span>+ 2ICl → 2HCl + I</span>₂.
t₁ = 5 s.
t₂ = 15 s.
c₁ = 1,11 M = 1,11 mol/L.
c₂ = 1,83 mol/L.
rate of formation = Δc ÷ Δt.
rate of formation = (c₂ - c₁) ÷ (t₂ - t₁).
rate of formation = (1,83 mol/L - 1,11 mol/L) ÷ (15 s - 5 s).
rate of formation = 0,72 mol/L ÷ 10 s.
rate of formation = 0,072 mol/L·s.
A covalent bond would happen
Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!
Answer:
a. -29.8 kJ/mol-rxn
Explanation:
For a chemical reaction system the forward and reverse rate are equal. The standard molar enthalpy formation of NH3 is -45.9 kJ/mol. For the enthalpy of NH3 (8) the molar enthalpy is -29.8kJ/mol. The molar mass of N2 = 28.02g/mol. Molar enthalpy of formation is standard amount of substance produced in the formation of a reaction. The molar enthalpy is the change in enthalpy due to reaction per mole.