Answer:
It's B
Explanation:
Hope this helps, tell me if im wrong!

where:
F - force
m - mass
a - acceleration
We transform this formula to get a:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
Answer:
transverse wave: A wave in which particles of the medium move at right angles to the direction of the wave is called a transverse wave.