Answer:
The object starts away from the origin and then moves toward the origin at a constant velocity. Next, it stops for one second. Finally, it moves away from the origin at a greater constant velocity.
Answer:
The final velocity of the object is,
= 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object,
= 0 m
The final displacement of the object,
= 0.75 m
The initial velocity of the object will be,
= o m/s
The final velocity of the object,
= ?
The average velocity of the object,
v = (
-
)/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is,
= 27 m/s
<span>I would say greater than because as you do deeper, the pressure strengthens. If you were in a 10 ft deep pool and you dive all the way to the bottom, the ears usually pop. That's because of the pressure. Whereas if you were to go five feet, your ears wouldn't. It depends on the age of the person.
Hope this helps.</span>
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m