The first and Third graph
This may seem confusing because they give you two masses, but all you have to do is pick one to do the calculations. Personally, I would pick O2, since the molar mass is easier to calculate. The answer would be 3.3 g (rounded for sig figs). To get this, first take the 5.9 grams of O2 and convert it to moles by dividing by the molar mass of oxygen gas, which is 32. Then, multiply both by the mole-mole ratio, which is 2:2, or simply 1:1. After that, multiply that by 18g, which is the molar mass of water to get grams of water.
REMEMBER, you have to write and balance the chemical equation before you can do any of that work.
That happens to be CH4 + 2O2 => CO2 + 2H2O
Opposites attract, like for example magnets, one is positive and the other is negatively charged, they will attract
Explanation:
protons have a relative charge of +1, they are located in the nucleus and the carry a positive charge
the electrons are negatively charged and have a charge of -1 . They are found orbiting on the shells .the electrons have a negligible mass of 1 / 1840
the neutrons have no charge they are located in the nucleus of an atom .
Answer:
Conservation of Energy and Mass
The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed. ... Similarly, the law of conservation of energy states that the amount of energy is neither created nor destroyed.