1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
7

can you help me create a sketch of two different objects with one that has a greater density than the other?

Physics
1 answer:
sergey [27]3 years ago
6 0

I don't know how good you are at sketching ... I'm terrible. 
But you can put the point across in a dramatic way if you
can sketch a bowling ball and a basketball ... you'll need
to clearly identify them with the markings you sketch on
each ball. 

They're the same shape and nearly the same size, but
there's a huge difference in their densities.

You might be interested in
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
Two children are throwing a ball back-and-forth straight across the back seat of a car. The ball is being thrown 7 mph relative
Evgesh-ka [11]

Answer:

the ball will fly in AX direction, making angle of 8.84° from the motion of the car

Explanation:

Given the data in the question and as illustrated in the diagram below;

Now, Lets assume line AB represent the movement of the car,

AC is the movement of the ball been thrown back and forth in the back seat

Ax is the motion of the ball it flies off the window

so from the diagram, We can see triangle ABC

where AB is 45 mph and AC = 7 mph

and angle ∠CAB = 90°

using SOH CAH TOA

TOA; tanθ = Opposite / Adjacent

tanθ = Opposite / Adjacent

tan( ∠ ABC ) = AC /  AB

we substitute

tan( ∠ ABC ) = 7 /  45

tan( ∠ ABC ) = 0.15555

( ∠ ABC ) = tan⁻¹ 0.15555

( ∠ ABC ) = 8.84°

Therefor, angle ( ∠ ABC )  is 8.84°

Meaning angle ( ∠ XAA' ) is also 8.84°

Therefore, the ball will fly in AX direction, making angle of 8.84° from the motion of the car

4 0
3 years ago
To determine the height of a tall building such as Sears Tower in Chicago, Illinois a ball was dropped from the top of the build
Darya [45]

Answer:

The height of Sears Tower is 1448.5 feet.

Explanation:

<h3>We apply the free fall formula to the ball: </h3><h3>y=v_{o} *t+\frac{1}{2} *g*t^{2}</h3><h3>y: The vertical distance the ball moves at time t  </h3><h3>v_{o}i: Initial speed </h3><h3>g=Gravity acceleration=9.8*(\frac{\frac{1ft}{0.305m} }{s^{2} } )</h3>

Known information

We know that the vertical distance (y) that the ball moves in 9,5s  is equal to height of Sears Tower (h).  

Too we know that the ball is released from rest, then,v_{0}=0

Height of Sears Tower calculation:

We replace  in the equation 1 the data following;

y=h

v_{o} =0

g=32,1\frac{ft}{s^{2} }

t= 9,5s

h=0*9.5+\frac{1}{2} *32.1*9.5^{2}

h=1448.5 ft

Answer: The height of Sears Tower is 1448.5 ft

6 0
3 years ago
What Molecules can be found in the interstellar medium? A. Water, Carbon dioxide, and Hydrogen. B. Oxygen, Nitrogen and ammonia.
Masteriza [31]
The interstellar medium is the matter as well as the radiations that are found in the galaxies occupying the spaces between the star systems.
Interstellar medium is mainly composed of hydrogen that is followed by helium and trace amounts of nitrogen, oxygen and carbon (considered traces when compared to amount of hydrogen).

Therefor, the right choice is:
<span>A. Water, Carbon dioxide, and Hydrogen</span>
3 0
3 years ago
Quark gluon plasma (qgp) is what kind of state of matter I.e. it’s equation of state is what?
sladkih [1.3K]

a 10 kg block reaches a point with a velocity of 15 m per second and slides down a rough track my the coefficient of the kinetic energy between the two surface ab and the block iis0.52

5 0
1 year ago
Other questions:
  • What causes atoms to bond together<br> ?!?
    12·2 answers
  • According to the second law of thermodynamics, when energy changes occur, _______ increases. question 2 options:
    8·1 answer
  • Where might you see a light wave with a large amplitude? Why?
    5·2 answers
  • What type of circuit is illustrated
    12·1 answer
  • Which subatomic particle will you add or remove from an atom to create a new element?
    5·1 answer
  • Mendeleev arranged the known chemical elements in a table according to increasing
    8·1 answer
  • A main difference between gravitational and electric forces is that electrical forces
    14·1 answer
  • Which two types of air masses would likely form a subtropical jet stream?
    8·2 answers
  • describe the relationship between the direction of the velocity vector and the direction of the acceleration for a body moving i
    5·1 answer
  • Which of the following examples BEST describes the life characteristic of respiration?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!