Answer:
(a) 3.75
(b) 2.00083
(c) 0.4898
Step-by-step explanation:
It is provided that X has a continuous uniform distribution over the interval [1.3, 6.2].
(a)
Compute the mean of X as follows:

(b)
Compute the variance of X as follows:

(c)
Compute the value of P(X < 3.7) as follows:
![P(X < 3.7)=\int\limits^{3.7}_{1.3}{\frac{1}{6.2-1.3}}\, dx\\\\=\frac{1}{4.9}\times [x]^{3.7}_{1.3}\\\\=\frac{3.7-1.3}{4.9}\\\\\approx 0.4898](https://tex.z-dn.net/?f=P%28X%20%3C%203.7%29%3D%5Cint%5Climits%5E%7B3.7%7D_%7B1.3%7D%7B%5Cfrac%7B1%7D%7B6.2-1.3%7D%7D%5C%2C%20dx%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B4.9%7D%5Ctimes%20%5Bx%5D%5E%7B3.7%7D_%7B1.3%7D%5C%5C%5C%5C%3D%5Cfrac%7B3.7-1.3%7D%7B4.9%7D%5C%5C%5C%5C%5Capprox%200.4898)
Thus, the value of P(X < 3.7) is 0.4898.
4a + 6b = 10
2a - 4b = 12...multiply by -2
----------------
4a + 6b = 10
-4a + 8b = - 24 (result of multiplying by -2)
------------------add
14b = - 14
b = -14/14
b = -1
2a - 4b = 12
2a - 4(-1) = 12
2a + 4 = 12
2a = 12 - 4
2a = 8
a = 8/2
a = 4
so 12a = 12(4) = 48 <==
Answer:
Go on Desmos
Step-by-step explanation:
Answer:
Gradient: m = 3
Step-by-step explanation:
m = change in y/change in x
m = 
m = 
m = 12/4
m = 3
Flour : sugar = (1/3) : (1/5) = 5 : 3 . . . . . . . . multiply the first ratio by 15 to eliminate fractions
The total of ratio units in the last representation is 5+3=8, so for a recipe of 16 cups, each ratio unit will stand for 16/8 = 2 cups.
Multiplying the ratio by 2 cups, we find Amanda will need
... 10 cups flour : 6 cups sugar
for her recipe.