Object height 10cm is placed in front of plane mirror. The height of the image will also be 10cm as the height of image is same as height of object in the case of plane mirror
Answer:
Explanation:
Given height of lamp from the ceiling = 2.6m
mass of the lamp = 3.8kg
acceleration due to gravity = 9.81m/s²
As the body falls to the ground, it falls under the influence of gravity.
Gravitational potential energy = mass*acc due to gravity * height
Gravitational potential energy = 3.8*2.6*9.81
Gravitational potential energy = 96.923 Joules
b) Kinetic energy = 1/2 mv²
m = mass of the body (in kg)
v = velocity of the body (in m/s²)
To get the velocity v, we will use the equation of motion 

Since mass = 3.8kg

c) To know how fast the lamp is moving when it hits the ground, we will use the formula. When the body hits the ground, the height covered will be 0m. this means that the body is not moving once it hits the ground. It stays in one position. The energy possessed by the body at this point is potential energy. The correct answer is therefore 0 m/s
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A
Answer:
a) The student must run flight of stairs to lose 1.00 kg of fat 709.5 times.
b) Average power
P(w)= 1062.07 [w]
P(hp)=1.42 [hp]
c) This activity is highly unpractical, because the high amount of repetitions he has to due in order to lose, just 1 Kg of fat.
Explanation:
First, lets consider the required amount of work to move the mass of the student. (considering running stairs just as a vertical movement)
Work:

Where m is the mass of the student, g is gravity (9.8 m/s) and d is the total distance going up the stairs (0.15m *85steps= 12.75m )
![W= F*d= m*g*d=85* 9.8*12.75=10620.75 [J]](https://tex.z-dn.net/?f=W%3D%20F%2Ad%3D%20m%2Ag%2Ad%3D85%2A%209.8%2A12.75%3D10620.75%20%5BJ%5D)
Converting from Joules to Kcals:

Now lets take into account the efficiency of the human body (20%)
2.537 ---> 20%
x ---> 100%

So the student is consuming 12.685 KCals each time he runs up the stairs.
Now,
1 g --> 9 Kcals
1000 g --> 9000KCals
Burning 1 g of fat, requieres 9 KCals, 1000g burns 9000KCals. So in order to burn a 1Kg of fat:

He must run up the stairs 709.5 times, to burn 1 Kg of fat.
********************
For b) just converting units, taking into account the time lapse. (53103.75 is the 100% of the energy in joules, from converting 12.685Kcals to joules)
![Power=\frac{Joules}{Seconds} =\frac{53103.75}{50} =1062.075 [W]\\](https://tex.z-dn.net/?f=Power%3D%5Cfrac%7BJoules%7D%7BSeconds%7D%20%3D%5Cfrac%7B53103.75%7D%7B50%7D%20%3D1062.075%20%5BW%5D%5C%5C)
![P(hp)=\frac{P(w)}{745.7} =\frac{1062.075}{745.7} =1.42[hp]](https://tex.z-dn.net/?f=P%28hp%29%3D%5Cfrac%7BP%28w%29%7D%7B745.7%7D%20%3D%5Cfrac%7B1062.075%7D%7B745.7%7D%20%3D1.42%5Bhp%5D)
*****