Answer:
hydrate
Explanation:
when a hydrate is heated,it changes color due to the exothermic reaction taking place.the structure of the complex changes but not entirely.this result in the sample to to not dissolve completely and we can observe the small traces of the sample.
Since a pH of 3 is three numbers higher than a pH of 6, we can find the change in acidity by taking 10 to the third power. The solution with a pH of 3 is 1000 times more acidic than the solution with a pH of 6.
Answer:
Percentage Yield is given as,
%age Yield = Actual Yield / Theoretical Yield × 100
This shows that the %age yield is directly depending upon the actual yield. And most of the time the percentage yield is less than 100 % because of the following factors.
Impure Starting Materials:
If the starting materials (reactants) are not pure then reaction will not completely form the desired product. Different by products will form which will decrease the %age yield.
Incomplete Reactions:
Not all reactions go to completion. In many reactions the starting material after some time stops forming the product due to different conditions. Some reactions attain equilibrium and stop increasing the amount of product. While, in some reactions a by products (like water) formed often react with the product to give a reverse reactions. Hence, the chemistry of reactions also causes the decrease in %age yield.
Handling:
Another major reason for decrease in yield is handling the product. Always some of the product is lost during the workup of the reaction like, taking TLC, doing solvent extraction, doing column chromatography, taking characterization spectrums. So, we can conclude that the %age yield will always be less than 100%.
Answer:
C. 0.4.
Explanation:
<em>∵ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) = (no. of moles acetic acid)/(no. of moles of acetic acid + no. of moles of water).</em>
<em></em>
- no. of moles of acetic acid = 2, no. of moles of water = 3.
- Total no. of moles = no. of moles of acetic acid + no. of moles of water = 2 + 3 = 5.
<em>∴ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) =</em> (2)/(5)<em> = 0.4.</em>
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1