Answer:
Molar mass of Ca = 40 g / mol , given 123 g Ca is 123/40= 3.075 moles,
1 mole = 6.022 * 10^23 atoms, so 3.075 moles Ca= 18.51*10^23 atoms
Explanation:
2.83 days into hours = 2.83 x 24 = 67.92 hours
67.92 hours into minute = 67.92 x 60 = 4075.2 minutes
4075.2 minutes into seconds = 4075.2 x 60 = 244,512 seconds.
The chemical equation without coefficients is:
Ca + CO2 + O2 --------> Ca CO3
You can balance that equation by trial an error.
This is the chemical equation balanced:
2Ca + 2CO2 + O2 --------> 2Ca CO3
Count the atoms on each side to check the balance
Atom Left side right side
Ca 2 2
C 2 2
O 2*2 + 2 = 6 2*3 = 6
Then those are the coefficients:
a0 = 2
a1 = 2
a2 = 1
a3 = 2
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522
Answer: The wavelength of the x-ray wave is 
Explanation:
To calculate the wavelength of light, we use the equation:

where,
= wavelength of the light = ?
c = speed of x-ray= 
= frequency of x-ray =

Putting in the values:

Thus the wavelength of the x-ray wave is 