Answer:
The hollow cylinder rolled up the inclined plane by 1.91 m
Explanation:
From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

moment of inertia, I, of a hollow cylinder = ¹/₂mr²
substitute for I in the equation above;


given;
v₁ = 5.0 m/s
vf = 0
g = 9.8 m/s²

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m
I think that it is true, but I'm not exactly sure. :)
If the comb and the paper are attracted to each other the charge on the paper, is D)must be positive
<h3>
Laws of electrical attraction</h3>
This states that
- Like charges attract
- Unlike charges repel
Now, given that a negatively charged plastic comb is brought close to, but does not touch, a small piece of paper. If the comb and the paper are attracted to each other the charge on the paper, this implies that both the negatively charged plastic comb and the paper have opposite charges.
Since the charge on the plastic comb is negative, this means that the charge on the paper must be positive
So, if the comb and the paper are attracted to each other the charge on the paper, is D)must be positive
Learn more about electric charge here:
brainly.com/question/2373424
during satellite motion we know that total energy is always conserved
so here we will have

here we know that


now at other position

now from above equation we have

now we have


so its kinetic energy will be 3500 MJ