1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
9

If electrons have a path to follow, they will flow to a area with charge

Engineering
1 answer:
Natali [406]3 years ago
5 0

Answer:

Hello there, the question is not complete, but not to worry you can check the explanation section to check how you can  solve a similar question or to be be able to solve the exact question directly.

Explanation:

The flow of electrons is what is known or refer to as Current. When energy is used on a nuclei, the electrons are forced to move from one position to the other. The direction of flow of electron is from the negative terminal which then moves to the positive terminal.

Therefore, it can be said that the positive charge determines the direction of electron flow. The starting point is the negative terminal, in which it will now move in the direction in which the positive terminal is.                    

You might be interested in
Oil with a density of 800 kg/m3 is pumped from a pressure of 0.6 bar to a pressure of 1.4 bar, and the outlet is 3 m above the i
Naddik [55]

Answer:

23.3808 kW

20.7088 kW

Explanation:

ρ = Density of oil = 800 kg/m³

P₁ = Initial Pressure = 0.6 bar

P₂ = Final Pressure = 1.4 bar

Q = Volumetric flow rate = 0.2 m³/s

A₁ = Area of inlet = 0.06 m²

A₂ = Area of outlet = 0.03 m²

Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s

Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s

Height between inlet and outlet = z₂ - z₁ = 3m

Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

\frac {P_1}{\rho g}+\frac{V_1^2}{2g}+z_1+h=\frac {P_2}{\rho g}+\frac{V_2^2}{2g}+z_2\\\Rightarrow h=\frac{P_2-P_1}{\rho g}+\frac{V_2^2-V_1^2}{2g}+z_2-z_1\\\Rightarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+\frac{6.67_2^2-3.33^2}{2\times 9.81}+3\\\Rightarrow h=14.896\ m

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 14.896\\\Rightarrow W_{p}=23380.8\ W

∴ Power input to the pump 23.3808 kW

Now neglecting kinetic energy

h=\frac{P_2-P_1}{\rho g}+z_2-z_1\\\Righarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+3\\\Righarrow h=13.19\ m\\

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 13.193\\\Rightarrow W_{p}=20708.8\ W

∴ Power input to the pump 20.7088 kW

6 0
3 years ago
1. A thin-walled cylindrical pressure vessel is capped at the end and is subjected to an internal pressure (p). The inside diame
Vesna [10]
I DONT KNOW OKAY UGHHH
6 0
3 years ago
A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into t
Nataly [62]

Answer:

A) A(t) = 10(100 - t) + c(100 - t)²

B) Tank will be empty after 100 minutes.

Explanation:

A) The differential equation of this problem is;

dA/dt = R_in - R_out

Where;

R_in is the rate at which salt enters

R_out is the rate at which salt exits

R_in = (concentration of salt in inflow) × (input rate of brine)

We are given;

Concentration of salt in inflow = 2 lb/gal

Input rate of brine = 5 gal/min

Thus;

R_in = 2 × 5 = 10 lb/min

Due to the fact that the solution is pumped out at a faster rate, thus it is reducing at the rate of (5 - 10)gal/min = -5 gal/min

So, after t minutes, there will be (500 - 5t) gallons in the tank

Therefore;

R_out = (concentration of salt in outflow) × (output rate of brine)

R_out = [A(t)/(500 - 5t)]lb/gal × 10 gal/min

R_out = 10A(t)/(500 - 5t) lb/min

So, we substitute the values of R_in and R_out into the Differential equation to get;

dA/dt = 10 - 10A(t)/(500 - 5t)

This simplifies to;

dA/dt = 10 - 2A(t)/(100 - t)

Rearranging, we have;

dA/dt + 2A(t)/(100 - t) = 10

This is a linear differential equation in standard form.

Thus, the integrating factor is;

e^(∫2/(100 - t)) = e^(In(100 - t)^(-2)) = 1/(100 - t)²

Now, let's multiply the differential equation by the integrating factor 1/(100 - t)².

We have;

So, we ;

(1/(100 - t)²)(dA/dt) + 2A(t)/(100 - t)³ = 10/(100 - t)²

Integrating this, we now have;

A(t)/(100 - t)² = ∫10/(100 - t)²

This gives;

A(t)/(100 - t)² = (10/(100 - t)) + c

Multiplying through by (100 - t)²,we have;

A(t) = 10(100 - t) + c(100 - t)²

B) At initial condition, A(0) = 0.

So,0 = 10(100 - 0) + c(100 - 0)²

1000 + 10000c = 0

10000c = -1000

c = -1000/10000

c = -0.1

Thus;

A(t) = 10(100 - t) + -0.1(100 - t)²

A(t) = 1000 - 10t - 0.1(10000 - 200t + t²)

A(t) = 1000 - 10t - 1000 + 20t - 0.1t²

A(t) = 10t - 0.1t²

Tank will be empty when A(t) = 0

So, 0 = 10t - 0.1t²

0.1t² = 10t

Divide both sides by 0.1t to give;

t = 10/0.1

t = 100 minutes

6 0
3 years ago
Answer my question I will mark brainliest
Iteru [2.4K]

Answer:

150

Explanation:

Mark me Brainliest

6 0
2 years ago
Read 2 more answers
When CO2 rises, temperature rises. Why do you think this is?
icang [17]

Answer:

The warming causes the oceans to release CO2. The CO2 amplifies the warming and mixes through the atmosphere, spreading warming throughout the planet. So CO2 causes warming AND rising temperature causes CO2 rise. Overall, about 90% of the global warming occurs after the CO2 increase.

Explanation:

6 0
3 years ago
Other questions:
  • Consider a simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater. The two cycles are
    15·1 answer
  • In a simple ideal Rankine cycle, water is used as the working fluid. The cycle operates with pressures of 2000 psi in the boiler
    7·1 answer
  • Coal fire burning at 1100 k delivers heat energy to a reservoir at 500 k. Find maximum efficiency.
    6·1 answer
  • You are given a partial implementation of one header file, GildedRose.hpp. Item is a class that holds the information for each i
    6·1 answer
  • 4. Which of the following is the first thing you should do when attempting
    13·2 answers
  • What can you add to a seatbelt ??<br> HELP ASAP
    15·1 answer
  • An engine has been diagnosed with blowby.
    12·1 answer
  • What is valve overlap?
    5·1 answer
  • How can the use of local materials improve the standard of living of Filipinos?
    8·1 answer
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!