Now, you always beat him. Your grandfather is likely experiencing a slight decline in perceptual speed.
<u>Explanation:</u>
The speed of perception refers to the capacity to accurately (and completely) compare words letter, digits, objects, images, etc. When testing, these objects can be displayed simultaneously or one after the other. This type of test can be included in the proficiency test.
For example, we have also seen all the puzzles that ask the reader to notice the differences between the two pictures. The time it takes to recognize these differences is a measure of the speed of perception. Likewise, in getting rid of cards at the given situation, grandfather experiences a less decline in his perceptual speed.
Answer:
The power will be "3.92×10⁹ Watts". A further explanation is given below.
Explanation:
The given values as per the question,
Rate,
= 8 million kg
Distance,
= 50 m
Gravity,
= 9.8 m/s²
As we know,
The power will be:
⇒ 
On putting the values, we get
⇒ 
⇒ 
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
a. <span>FM GmMmr2
</span>= 6.67 x 10-11N.m2kg27 .35 x 1022 kg 70 kg 3.78 x 108 m2
<span>= 2.40 x 10-3 N
b. </span><span>FE GmEmr2
= 6.67 x 10-11 N.m2kg 25 .97 x 1034 kg (70kg) 6.38 x 106 m2
=685 N
FMFE 2.40 x 10-3N685 N= 0.0004%</span>
Answer:
The wave speed of the sound wave is 900
.
Explanation:
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The propagation velocity is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation: v = f * λ.
In this case:
Replacing:
v= 500 Hz* 1.8 m
v= 900 
<u><em>The wave speed of the sound wave is 900 </em></u>
<u><em>.</em></u>