<span> Newtons First Law is applied on my egg experiment because it will not move or change it's acceleration until a force acts upon it. Newton's Second Law is applied because of the acceleration caused by natural forces as the egg is plummeting to the earth. And the amount of acceleration the egg has will be largely affected by the amount of force used to hurl the egg to the ground. The Third Law of Motion affects the egg because the amount of force the egg hits the ground with, the ground pushes back with equal and opposite force.</span>
Answer:
Second projectile is 1.4 times faster than first projectile.
Explanation:
By linear momentum conservation
Pi = Pf
m x U + M x 0 = (m + M) x V

Now Since this projectile + pendulum system rises to height 'h', So using energy conservation:
KEi + PEi = KEf + PEf
PEi = 0, at reference point
KEf = 0, Speed of system zero at height 'h'

PEf = (m + M) g h
So,


So from above value of V
Initial velocity of projectile =U

Now Since mass of projectile and pendulum are constant, So Initial velocity of projectile is proportional to the square root of height swung by pendulum.
Which means



U₂ = 1.41 U₁
Therefore we can say that ,Second projectile is 1.4 times faster than first projectile.
Answer: 
Explanation:
given data:
metre moving current = 
meters voltage = 
or 
<u><em>Solution:</em></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>







the unknown voltage is 316.8V
Answer:
<em>c. ABBA counterbalancing
</em>
Explanation:
The student should not use the method because it is a progressive error management technique for each subject by introducing all <em>treatment circumstances twice, first in one sequence, then in the other (AB, BA) by subject counterbalancing.</em>
If participants experience conditions more than once, they experience the conditions first in one order, then the opposite order.