Apply the combined gas law
PV/T = const.
P = pressure, V = volume, T = temperature, PV/T must stay constant.
Initial PVT values:
P = 1atm, V = 8.0L, T = 20.0°C = 293.15K
Final PVT values:
P = ?, V = 1.0L, T = 10.0°C = 283.15K
Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:
1(8.0)/293.15 = P(1.0)/283.15
P = 7.7atm
Answer:
1.41 m/s^2
Explanation:
First of all, let's convert the two speeds from km/h to m/s:


Now we find the centripetal acceleration which is given by

where
v = 12.8 m/s is the speed
r = 140 m is the radius of the curve
Substituting values, we find

we also have a tangential acceleration, which is given by

where
t = 17.0 s
Substituting values,

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

The x-acis of a trajectory represents its C
Answer:
The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.
Explanation:
Answer: Pieces of minerals, rocks, plant and animal remains.
Explanation: Pieces of minerals, rocks, plant and animal remains. whether or not patterns cause flow rates of rivers to vary. sand settles from faster-moving water;smaller costs of silt and clay that form up mud settle from slower moving water.