Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
I don't think so. "It's not a matter of pigment discrimination: Red and yellow bell peppers are essentially just green peppers that have been allowed to ripen"
Answer:
Explanation:
Catalyst is I2 . Because I2 is reacted with starting material in step 1 and generated in second step
Rate limiting step is step 1. Because in rate equation CH3CHO and I2 is mentioned. Hence the overall rate of reaction is depending CH3CHO and I2. Rate limiting step is step 1
Answer:
Gold is a metal, more specifically a transition metal, whereas Oxygen is a nonmetal, more specifically a reactive nonmetal. Using this information, you can compare and contrast metals, nonmetals, and metalloids.
Metals are:
Shiny
High melting point
Mostly silver or gray in color
Mostly solids at room temperature – Mercury (Hg) is a liquid at room temperature
Malleable – able to be hammered into a thin sheet
Ductile – able to be drawn/pulled into a wire
Good conductors of heat and electricity
Nonmetals are:
Dull
Low melting point
Brittle – break easily
Not malleable
Not ductile
Poor conductors of heat and electricity
Metalloids are:
Found on the “zig-zag” line on the Periodic Table of Elements
Have properties of both metals and nonmetals
Can be shiny or dull
Semiconductors – able to conduct electricity under certain conditions
Explanation:
Reccomend this site for questions llike these: https://ptable.com/#Properties
Answer:
The answer to your question is Q = 18702.5 J
Explanation:
Data
mass of water = m = 447 g
Cp = 4.184 J/g°C
Temperature 1 = T1 = 25°C
Temperature 2 = T2 = 35°C
Heat = Q = ? Joules
Process
1.- Write the formula to calculate heat
Q = mCp(T2 - T1)
2.- Substitution
Q = (447)(4.184)(35 - 25)
3.- Simplification
Q = (447)(4.184)(10)
4.- Result
Q = 18702.5 J